Solvatochromic and Photochromic behavior of 1',3',3'-trimethyl-8-nitrospiro[chromene-2,2'-indoline]
الموضوعات :Zeinalabedin Sepehr 1 , Hossein Nasr-Isfahani 2 , Ali Reza Mahdavian 3
1 - Facultyof Chemistry, Shahrood University of Technology, Shahrood, Iran.
2 - Facultyof Chemistry, Shahrood University of Technology, Shahrood, Iran.
3 - Department of Polymer Science, Iran Polymer and Petrochemical Institute, Tehran, Iran.
الکلمات المفتاحية:
ملخص المقالة :
1',3',3'-trimethyl-8-nitrospiro[chromene-2,2'-indoline] is one of the spiropyran derivatives. In recent years, the spiropyran derivatives have been studied numerously for their photochromic properties.We know these compounds as an isomeric system. The closed-ring spiropyran (SP) could be converted into the open-ring merocyanine (MC) upon UV irradiation. In this work, 1',3',3'-trimethyl-8-nitrospiro[chromene-2,2'-indoline] is prepared, and subsequently, characterized by the FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques. In order to confirm its molecular structure, the UV–visible spectroscopic analysis of its solutions is studied in different solvents in the spectral range of 250-750 nm before and after exposure to a UV lamp. The 1',3',3'-trimethyl-8-nitrospiro[chromene-2,2'-indoline]chromophore shows a solvatochromism behavior: the spiropyran solution in acetonitrile is completely colorless, while its solution is pale blue in DMF and dark purple in ethanol and methanol. The visible spectra of the spiropyran solutions show that the solvents methanol and ethanol are capable of stabilizing the MC form better than the solvents DMF and acetonitrile, and that this photochromic compound has a higher absorption intensity in the visible region.
[1]. H. Bouas-Laurent, H. Dürr, Pure and Applied Chemistry, 73, 639 (2001).
[2]. K. Sakai, Y. Imaizumi, T. Oguchi, H. Sakai, M. Abe, Langmuir, 26, 9283 (2010).
[3]. E. B. Kang, H. Cho, M. Z. A. Islamy, S. Y. Park, Surface and Interface Analysis, 49, 759
(2017).
[4]. J. Chen, P. Zhang, G. Fang, P. Yi, X. Yu, X. Li, F. Zeng and S. Wu, The Journal of Physical
Chemistry B., 115, 3354 (2011).
[5]. G. Berkovic, V. Krongauz, V. Weiss, Chemical Reviews, 100, 1741(2000).
[6]. H. Xia, K. Xie, G. Zou, Molecules, 22, 2236(2017).
[7]. V. Barachevsky, Journal of Photochemistry and Photobiology A: Chemistry, 354, 61 (2018).
[8]. L. Yu, C. Schlaich, Y. Hou, J. Zhang, P. L. M. Noeske, R. Haag, Chemistry–A European
Journal, 24, 7742 (2018).
[9]. M. Mennig, K. Fries, M. Lindenstruth, H. Schmidt, Thin Solid Films, 351, 230 (1999).
[10]. P. P. Campos, A. Dunne, C. Delaney, C. Moloney, S. E. Moulton, F. Benito-Lopez, M.
Ferreira, D. Diamond, L. Florea, Langmuir, 34, 4210 (2018).
[11]. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Chemical Physics Letters, 691, 37 (2018).
[12]. J. Keyvan Rad, A. R. Ghomi, K. Karimipour, A. R. Mahdavian, Macromolecules, 53, 1613
(2020).
[13]. N. Darwish, A. C. Aragones, T. Darwish, S. Ciampi, I. Diez-Perez, Nano Letters, 14, 7064
(2014).
[14]. H. Schenderlein, A. Voss, R. W. Stark, M. Biesalski, Langmuir, 29, 4525 (2013).
[15]. W. Tian, J. Tian, Langmuir, 30, 3223 (2014).
[16]. K.-W. Cheng, C.-C. Lai, P.-T. Chiang, S.-H. Chiu, Chemical Communications, 2854 (2006).
[17]. E. Gaeva, V. Pimienta, S. Delbaere, A. Metelitsa, N. Voloshin, V. Minkin, G. Vermeersch, J.
Micheau, Journal of Photochemistry and Photobiology A: Chemistry, 191, 114 (2007).
[18]. S. Wan, Y. Zheng, J. Shen, W. Yang, M. Yin, ACS Applied Materials & Interfaces, 6, 19515
(2014).
[19]. Y. Shiraishi, R. Miyamoto, T. Hirai, Organic Letters, 11, 1571 (2009).
[20]. S. Chen, F. Jiang, Z. Cao, G. Wang, Z.-M. Dang, Chemical Communications, 51, 12633
(2015).
[21]. L. Sheng, M. Li, S. Zhu, H. Li, G. Xi, Y.-G. Li, Y. Wang, Q. Li, S. Liang, K. Zhong, Nature
Communications, 5, 1 (2014).
[22]. A. Abdollahi, J. K. Rad, A. R. Mahdavian, Carbohydrate Polymers, 150, 131 (2016).
[23]. A. Abdollahi, Z. Alinejad, A. R. Mahdavian, Journal of Materials Chemistry C., 5, 6588
(2017).
[24]. A. Abdollahi, A. Mouraki, M. H. Sharifian, A. R. Mahdavian, Carbohydrate Polymers, 200,
583(2018).
[25]. C. Tan, Z. Zhao and J. Gao, Acta Chimica Sinica,70, 1095 (2012).
[26]. V. Ahluwalia, P. Bhagat, R. Aggarwal, R. Chandra, Intermediates for organic synthesis, IK
International Pvt Ltd (2010).
[27]. R. F. Elshaarawy, I. M. Eldeen, E. M. Hassan, Journal of Molecular Structure, 1128, 162
(2017).
[28]. S. S. Razi, R. Ali, P. Srivastava, A.Misra, Tetrahedron Letters, 55, 1052 (2014).
[29]. R. r. Tang, K. l. Huang, Z. l. Tang, Q. Yang, Synthetic Communications, 37, 1347 (2007).
[30]. Y. Yang, J. Guan, P. Qiu, Q. Kan, Transition Metal Chemistry, 35,263 (2010).
[31]. E. Braude, M. Gal'bershtam, Chemistry of Heterocyclic Compounds, 14, 153 (1978).