Fabrication of Graphene Oxide Nanocomposite Based on Poly(3-hydroxybutyrate)-Chitosan as a Useful Drug Carrier
الموضوعات :Seyed Mohammadjafar Mousavi 1 , Mirzaagha Babazadeh 2 , Mahboob Nemati 3 , Moosa Esʼhaghi 4
1 - Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 - Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
3 - Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of
Medical Sciences, Tabriz, Iran
4 - Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
الکلمات المفتاحية:
ملخص المقالة :
This research work describes a simple, eco-friendly, and facile method to synthesize a novel graphene oxide (GO) nanocomposite based on poly(3-hydroxybutyrate)-chitosan (PHB-CS) grafted to poly(methyl methacrylate-block-(poly(ethylene glycol) methacrylate-random-2-(dimethyl amino)ethyl methacrylate)) copolymer. The obtained nanocomposite was designated as GO/PHB-CS-gP(MMA-b-(PEGMA-ran-DMAEMA)) and investigated as a drug delivery system. The synthesized products were characterized by FTIR, 1HNMR, scanning electron microscopy (SEM), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). Doxorubicin (DOX) as an anticancer drug was loaded on the synthesized GO nanocomposite and the drug encapsulation efficiency was calculated about 76.4%. The release profiles indicated that the resulting GO nanocomposite has a pH-responsive behavior under physiological conditions due to the hydrogen bonding interaction between PHB-CS-g-P(MMA-b-(PEGMA-ran-DMAEMA)) and GO. The release property of DOX from GO nanocomposite exhibited a slow sustained release, and suggested that the GO/PHB-CS-gP(MMA-b-(PEGMA-ran-DMAEMA)) nanocomposite could be an appropriate candidate as a useful nanocarrier for the release of DOX in controlled drug delivery systems for treatment of cancer cells.
1. Adeli F., Abbasi F., Babazadeh M., Davaran S. Thermo/pH dual-responsive micelles based
on the host-guest interaction between benzimidazole-terminated graft copolymer and β-
cyclodextrin-functionalized star block copolymer for smart drug delivery. J Nanobiotech.
2022;20:91.
2. Samadzadeh S., Babazadeh M., Zarghami N., Pilevar-Sultanahmadi Y., Mousazadeh H. An
implantable smart hyperthermia nanofiber with switchable, controlled and sustained drug
release: possible application in prevention of cancer local recurrence. Mater Sci Eng C.
2021;118:111384.
3. Deng S., Gigliobianco M.R., Censi R., Martino P.D. Polymeric nanocapsules as
nanotechnological alternative for drug delivery system: current status, challenges and
opportunities. Nanomater. 2020;10(5):847.
4. Alven S., Nqoro X., Buyana B., Aderibigbe B.A. Polymer-drug conjugate, a potential
therapeutic to combat breast and lung cancer. Pharmaceutics. 2020;12(5):406.
5. Zhang J., Mou L., Jiang X. Surface chemistry of gold nanoparticles for health-related
applications. Chem Sci. 2020;11(4):923-36.
6. Fan M., Han Y., Gao S., Yan H., Cao L., Li Z., Liang X.J., Zhang J. Ultrasmall gold
nanoparticles in cancer diagnosis and therapy. Theranostics. 2020;10(11):4944-57.
7. Rahdar A., Hajinezhad M.R., Hamishekar H., Ghamkhari A., Kyzas G.Z.
Copolymer/graphene oxide nanocomposites as potential anticancer agents. Polym Bull.
2021;78(9):4877-98.
8. Ghamkhari A., Abbaspour-Ravasjani S., Talebi M., Hamishehkar H., Hamblin M.R.,
Development of a graphene oxide-poly lactide nanocomposite as a smart drug delivery
system. Inter J Biol Macromol. 2021;169:521-31.
9. Massoumi B., Taghavi N., Ghamkhari A. Synthesis of a new biodegradable system based
on β-cyclodextrin/iron oxide nanocomposite: application for delivery of docetaxel. Polym
11. Anzar N., Hasan R., Tyagi M., Yadav N., Narang J. Carbon nanotube-a review on
synthesis, properties and plethora of applications in the field of biomedical science. Sens
Inter. 2020;1:100003.
12. Samadzadeh S., Mousazadeh H., Ghareghomi S., Dadashpour M., Babazadeh M.,
Zarghami N. In vitro anticancer efficacy of Metformin-loaded PLGA nanofibers towards
the post-surgical therapy of lung cancer. J Drug Deliv Sci Technol. 2021;61:102318.
13. Mohebian Z., Babazadeh M., Zarghami N., Mousazadeh H. Anticancer efficiency of
curcumin-loaded mesoporous silica nanoparticles/nanofiber composites for potential
postsurgical breast cancer treatment. J Drug Deliv Sci Technol. 2021;61:102170.
14. Rad F., Davaran S., Babazadeh M., Akbarzadeh A., Pazoki-Torodi H. Biodegradable
electrospun polyester-urethane nanofiber scaffold: co-delivery investigation of
doxorubicin-ezetimibe and its synergistic effect on prostate cancer cell line. J Nanomater.
2022;2022:8818139.
15. Mikula K., Izydorczyk G., Skrzypczak D., Mironiuk M., Moustakas K., Witek-Krowiak
A., Chojnacka K. Controlled release micronutrient fertilizers for precision agriculture-a
review. Sci Total Environ. 2020;712:136365.
16. Bayer I.S. Hyaluronic acid and controlled release: a review. Molecules. 2020;25(11):2649.
17. Yalcin T.E., Ilbasmis-Tamer S., Takka S. Antitumor activity of gemcitabine hydrochloride
loaded lipid polymer hybrid nanoparticles (LPHNs): in vitro and in vivo. Inter J Pharm.
2020;580:119246.
18. Wang X., Wang Y., Hu J., Xu H. An antitumor peptide RS17‐targeted CD47, design,
synthesis, and antitumor activity. Cancer Med. 2021;10(6):2125-36.
19. Inchina V.I., Izbastyyeva M.D., Tarasova T.V., Ulanova T.V., Avanesov A.M., Khaydar
D.A. Antitumor efficacy of liposomal doxorubicin hydrochloride in combination with
tamoxifen: experimental study. Archiv Euromedica. 2020;10(3):22-4.
20. Wang Z., Peng P., Zhang L., Wang N., Tang B., Cui B., Liu J., Xu D. Effect of electric
field on the microstructure and electrical properties of (In+Ta) co-doped TiO2 colossal
dielectric ceramics. J Mater Sci Mater Electron. 2022;33(9):6283-93.
21. Karki N., Tiwari H., Tewari C., Rana A., Pandey N., Basak S., Sahoo N.G. Functionalized
graphene oxide as a vehicle for targeted drug delivery and bioimaging applications. J
Mater Chem B. 2020;8(36):8116-48.
22. Ashjaran M., Babazadeh M., Akbarzadeh A., Davaran S., Salehi R. Stimuli-responsive
polyvinylpyrrolidone-NIPPAm-lysine graphene oxide nano-hybrid as an anticancer drug
delivery on MCF7 cell line. Artif Cells Nanomed Biotechnol. 2019;47(1):443-54.
23. Cha-umpong W., Mayyas M., Razmjou A., Chen V. Modification of GO-based
pervaporation membranes to improve stability in oscillating temperature operation.
Desalination. 2021;516:115215.
24. Mahdavi M., Fattahi A., Tajkhorshid E., Nouranian S. Molecular insights into the loading
and dynamics of doxorubicin on PEGylated graphene oxide nanocarriers. ACS Appl Bio
Mater. 2020;3(3):1354-63.
25. Borandeh S., Hosseinbeigi H., Abolmaali S.S., Monajati M., Tamaddon A.M. Steric
stabilization of β-cyclodextrin functionalized graphene oxide by host-guest chemistry: a
versatile supramolecule for dual-stimuli responsive cellular delivery of doxorubicin. J
Drug Deliv Sci Technol. 2021;63:102536.
M. Babazadeh, J. Appl. Chem. Res., 18, 1, 38-56 (2024)
54
26. Ashjaran M., Babazadeh M., Akbarzadeh A., Davaran S., Salehi R. A lysine
functionalized graphene oxide based nanoplatform for delivery of fluorouracil to A549
28. Wang F., Su H., Xu D., Dai W., Zhang W., Wang Z., Anderson C.F., Zheng M., Oh R.,
Wan F., Cui H. Tumour sensitization via the extended intratumoural release of a STING
agonist and camptothecin from a self-assembled hydrogel. Nat Biomed Eng.
2020;4(11):1090-101.
29. Jiang C., Zhao H., Xiao H., Wang Y., Liu L., Chen H., Shen C., Zhu H., Liu Q. Recent
advances in graphene-family nanomaterials for effective drug delivery and phototherapy.
Expert Opin Drug Deliv. 2021;18(1):119-38.
30. Koch M., Berendzen K.W., Forchhammer K. On the role and production of
polyhydroxybutyrate (PHB) in the cyanobacterium Synechocystis sp. PCC 6803. Life.
2020;10(4):47.
31. Smith M.K., Paleri D.M., Abdelwahab M., Mielewski D.F., Misra M., Mohanty A.K.
Sustainable composites from poly (3-hydroxybutyrate) (PHB) bioplastic and agave natural
fibre. Green Chem. 2020;22(12):3906-16.
32. Situmorang M.L., Suantika G., Santoso M., Khakim A., Wibowo I., Aditiawati P. Poly‐β‐
hydroxybutyrate (PHB) improves nursery‐phase pacific white shrimp litopenaeus
vannamei defense against vibriosis. N Am J Aquac. 2020;82(1):108-14.
33. Parvizifard M., Karbasi S. Physical, mechanical and biological performance of
PHBchitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: potential
application in bone tissue engineering. Int J Biol Macromol. 2020;152:645-62.
34. Panaitescu D.M., Nicolae C.A., Gabor A.R., Trusca R. Thermal and mechanical properties
of poly (3-hydroxybutyrate) reinforced with cellulose fibers from wood waste. Ind Crops
Prod. 2020;145:112071.
35. Liang Q., Shuping G., Chenyu L., Dongyu J., Guixue W., Tieying Y. Impact of a bioactive
drug coating on the biocompatibility of magnesium alloys. J Mater Sci. 2020;55(14):6051-
64.
36. Gorrasi G., Longo R., Viscusi G. Fabrication and characterization of electrospun
membranes based on poly(ε-caprolactone), poly(3-hydroxybutyrate) and their blend for
tunable drug delivery of curcumin. Polymers. 2020;12(10):2239.
37. Karimi Tar A., Karbasi S., Naghashzargar E., Salehi H. Biodegradation and cellular
evaluation of aligned and random poly (3-hydroxybutyrate)/chitosan electrospun scaffold
for nerve tissue engineering applications. Mater Technol. 2020;35(2):92-101.
38. Zhorina L.A., Iordanskii A.L., Rogovina S.Z., Grachev A.V., Yakhina A.R., Prut E.V.,
Berlin A.A. Thermal characterization and sorption of FeIII ion by ternary polylactide-poly-
3-hydroxybutyrate-chitosan compositions. Mendeleev Commun. 2021;31(1):104-6.
39. Shoari S.A., Jafarpour A., Bagheri R., Norouzi F., Mahin T., Taherzadeh S.,
Allahgholipour E., Arjang S., Soleimani S., Davari Asl A., Olyayee F.F.B., Rezaei Y.,
Maleki Dizaj S., Sharifi S. Polymeric nano-biomaterials in regenerative endodontics.
Eurasian Chem Commun. 2021;3:56-69.
40. Kumar D., Gihar S., Shrivash M.K., Kumar P., Kundu P.P. A review on the synthesis of
graft copolymers of chitosan and their potential applications. Int J Biol Macromol.
2020;163:2097-112.
41. Deng W., Tang S., Zhou X., Liu Y., Liu S., Luo J. Honeycomb-like structure-tunable
chitosan-based porous carbon microspheres for methylene blue efficient removal.
Carbohydr Polym. 2020;247:116736.
42. Andonegi M., Heras K.L., Santos-Vizcaino E., Igartua M., Hernandez R.M., Caba K.D.L.,
Guerrero P. Structure-properties relationship of chitosan/collagen films with potential for
biomedical applications. Carbohydr Polym. 2020;237:116159.
43. Salama A., Hasanin M., Hesemann P. Synthesis and antimicrobial properties of new
chitosan derivatives containing guanidinium groups. Carbohydr Polym.
2020;241:116363.
44. Yang S., Lei P., Shan Y., Zhang D. Preparation and characterization of antibacterial
electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous
membrane. Appl Surf Sci. 2018;435:832-40.
45. Huang T., Zhang L., Chen H., Gao C. A cross-linking graphene oxide-polyethyleneimine
hybrid film containing ciprofloxacin: one-step preparation, controlled drug release and
antibacterial performance. J Mater Chem B. 2015;3(8):1605-11.
46. Ghamkhari A., Abbasi F., Abbasi E., Ghorbani M. A novel thermo-responsive system
based on β-cyclodextrin-nanocomposite for improving the docetaxel activity. Int J Polym
Mater Polym Biomater. 2021;70(12):830-40.
47. Ghamkhari A., Sarvari R., Ghorbani M., Hamishehkar H. Novel thermoresponsive starliked
nanomicelles for targeting of anticancer agent. Eur Polym J. 2018;107:143-54.
48. Mousavi S.M., Babazadeh M., Nemati M., Es’haghi M. Doxorubicin-loaded
biodegradable chitosan-graphene nanosheets for drug delivery applications. Polym Bull.
2022;79(8):6565-80.
49. Jankovsky O., Marvan P., Novacek M., Luxa J., Mazanek V., Klimova K., Sedmidubsky
D., Sofer Z. Synthesis procedure and type of graphite oxide strongly influence resulting
graphene properties. Appl Mater Today. 2016;4:45-53.
50. Sanna V., Pintus G., Bandiera P., Anedda R., Punzoni S., Sanna B., Sechi M. Development
of polymeric microbubbles targeted to prostate-specific membrane antigen as prototype of
novel ultrasound contrast agents. Mol Pharm. 2011;8(3):748-57.
51. Hassan M.A., Bakhiyet E.K., Ali S.G., Hussien H.R. Production and characterization of
polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. J App Pharm
Sci. 2016;6(4):46-51.
52. Hosokawa M.N., Darros A.B., Moris V.A.D., Paiva J.M.F.D. Polyhydroxybutyrate
composites with random mats of sisal and coconut fibers. Mater Res. 2016;20:279-90.
53. Konkena B., Vasudevan S. Understanding aqueous dispersibility of graphene oxide and
reduced graphene oxide through pKa measurements. J Phys Chem Lett. 2012;3(7):867-72.