Applying Kinetic Spectrophotometric Method and Artificial Neural Network Model for Determination of Metronidazole with Albizia Lebbeck Leaves-capped AgNPs Sensor in Blood and Urine Samples
الموضوعات :Elham Pournamdari 1 , Leila Niknam 2 , Farzaneh Marahel 3
1 - Department of Science, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
2 - Department of Science, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
3 - Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
الکلمات المفتاحية:
ملخص المقالة :
The environmental pollution caused by drug antibiotic waste presents a foremost concern in the ecosystem,as high levels of these antibiotic drugs after consumption when released into the ecosystem, biologicalsamples are accumulated and are producing overall contamination. Consequently, the need for selective,sensitive, fast, easy-to-handle, and low-cost early monitoring detection systems is growing. In this study, weused a prepared Albizia Lebbeck Leaves-capped AgNPs sensor to illustrate examples of friendly biosensorswith their real application fields for the sensitive detection of the metronidazole drug in various matricessuch as human fluids by kinetic spectrophotometric method. The calibration curve was linear in the range of(0.02 to 10.0 µg L−1). The standard deviation of less than (3%), and detection limits (3S/m) of the method(0.02 µg L−1in time 8 min, 367 nm) were obtained for sensor level response Albizia Lebbeck Leaves-cappedAgNPs with (95%) confidence evaluated. The artificial neural network model was used as a tool very low fordetermining mean square error (MSE 0.061) for metronidazole drug by Albizia Lebbeck Leaves-cappedAgNPs sensor. The observed outcomes confirmed the suitability of recovery and a very low detection limitfor measuring the metronidazole drug. The method introduced to measure metronidazole drugs in realsamples such as urine and blood was used and can be used for other drugs environmental pollution andhospital samples.
[1]. S. Tanreh, A. Shameli, E. Balali, J. Appl. Chem. Res., 12(1), 79 (2018).
[2]. J.P. Sylvestre, M.C. Tang, A. Furtos, G. Leclair, M. Meunier, J.C. Leroux, J. Contr. Rel., 149,
273 (2011).
[3]. Y.P. Shiu, Y.M. Tang, X.F. Zhang, J. Ge, Z.C. Pu, Bangladesh. J. Pharmacol., 10, 383 (2015).
[4]. J. Muller, P. Schildknecht, N. Muller, J. Antimicrob. Chemoth., 68, 1781 (2013).
[5]. J. Han, L. Zhang, S. Yang, J. Wang, J. Environ. Contam. Toxicol., 92, 196 (2014).
[6]. W. Jin, W. Li, Q. Xu, Q. Dong, J. Electrophoresis, 21(7), 1409 (2000).
[7]. S. Ashour, N. Kattan, Int. J. Biolog. Sci., 6, 13 (2010).
[8]. N.W. Ali, M. Gamal, M. Abdelkawy, J. Pharm. Sci., 26, 865 (2013).
[9]. M. Silva, S. Schramm, E. Kano, E. Koono, V. Porta, C. Serra, J. Chromatogr., 47(9), 781
(2009).
[10]. H. Liu, F. Li, R. Yang, L. Wang, Y. Ma, J. Chinese. Chromatogr., 27, 50 (2009).
[11]. S.H. Lee, W.Y. Rho, S.J. Park, J. Kim, O.S. Kwon, B.H. Jun, J. Sci. Rep., 8, 16763 (2018).
[12]. Sh. Bouroumand, F. Marahel, F. Khazali, Iran. J. Anal. Chem., 7(2), 47 (2020).
[13]. J. Das, M. Dhua, J. Pharma. Sci. Tech., 3, 106 (2014).
[14]. E. Roy, S.K. Maity, S. Patra, P.K. Sharma, RSC. Adv., 4, 32881 (2014).
[15]. S.H. Lee, J.H. Sung, T.H. Park, J. Ann. Biomed. Eng., 40, 1384 (2012).
[16]. A. Syafiuddin, M.R. Salmiati, A.B.H. Kueh, T. Hadibarata, H. Nur, J. Clin. Chem. Soc., 65,
732 (2017).
[17]. M. Pargari, F. Marahel, B. Mombini Godajdar, J. Phys. Theor. Chem., 17(1,2), 1 (2020).
[18]. X. Fang, H.X. Ren, H. Zhao, Z.X. Li, J. Microchim. Acta., 184, 415 (2017).
[19]. B. Sadeghi, A. Rostami, S.S. Momeni, Spectrochim. Acta. A., 134, 326 (2015).
[20]. F. Maghami, M. Abrishamkar, B. Mombeni Goodajdar, M. Hosseini, Desal Water Treat., 228,
389 (2021).
[21]. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci., 17, 1534 (2016).
[22]. B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, J. Colloid Interface Sci., 493, 85 (2017).
[23]. C.M. Kaye, M. Sankey, L.A. Thomas, J. Clin. Pharmacology, 9, 528 (1980).
[24]. L. Niknam, F. Marahel, J. Phys. Theor. Chem., 18, 37 (2021).
[25]. J.S. Justin Packia Jacob, J. Colloid. Surfaces. B: Biointerfaces, 91, 212 (2012).
[26]. F. Marahel, B. Mombeni Goodajdar, L. Niknam, M. Faridnia, E. Pournamdari, S. Mohammad
Doost, Int. J. Environ. Anal. Chem., 101, 1 (2021).
[27]. B. Mombeni Goodajdar, F. Marahel, L. Niknam, E. Pournamdari, E. Mousavi, Int. J. Environ.
Anal. Chem., 101, 1 (2021). https://doi.org/10.1080/03067319.2021.1940159.
[28]. H.R. Akbari Hasanjani, M.R. Sohrabi, Iran J. Pharma. Res., 16(2), 478 (2017).
[29]. Z. Masoudyfar, S. Elhami, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 211, 234 (2018).
[30]. B. Khodadadi, M. Sabeti, O. Norozi, J. Appl. Chem. Res., 15(1), 46 (2021).
[31]. C. Krishnaraj, E.G. Jagan, S. Jagan, P. Rajasekar, P.T. Selvakumar, N. Kalaichelvan, J.
Colloids Surfaces B : BioInterfaces, 76, 50 (2010).
[32]. P.K. Singh, K. Bhardwaj, P. Dubey, A. Prabhune, RSC. Adv., 5, 24513 (2015).
[33]. M.A. Karimi, M.A. Mozaheb, A. Hate-Mehrjardi, H. Tavallali, A.M. Attaran, G. Deilamy-Rad,
J. Scientia Iranica Trans. F. Nanotechnology, 22, 2736 (2015).
[34]. A. Hatamie, F. Marahel, A. Sharifat, Talanta, 176, 518 (2018).
[35]. N. Samadi, S. Narimani, J. Chem. Biolog. Phys. Sci., 6, 387 (2016).
[36]. A. Ramzannezad, A. Hayati, A. Bahari, H. Najafi-Ashtiani, Iran. J. Basic Med. Sci., 24, 962
(2021).
[37]. M. Mirsalari, S. Elhami, Spectrochim. Acta A. Mol. Biomol. Spectrosco., 240, 118617 (2020).
[38]. X. Yang, M. Liu, Y. Yin, F. Tang, H. Xu, X. Liao, Sensors, 18(4), 964 (2018).
[39]. F. Shahrouei, S. Elhami, E. Tahanpesar, Spectrochim. Acta A. Mol. Biomol. Spectrosc., 203,
287 (2018).
[40]. N. Samadi, S. Narimani, J. Sensor Lett., 14, 530 (2016).