Removing of Acid Red 1 Dye Pollutant from Contaminated Waters by UV/ TiO2/ H2O2 Process Using a Recirculating Tubular Reactor
الموضوعات :Kambiz Seyyedi 1 , Samira Khoshbin 2 , Rasoul Piri 3
1 - Department of Chemistry, Tabriz branch, Islamic Azad University, Tabriz, Iran.
Department of Chemistry, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran.
2 - Department of Chemistry, Tabriz branch, Islamic Azad University, Tabriz, Iran.
Department of Chemistry, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran.
3 - Department of Chemistry, Tabriz branch, Islamic Azad University, Tabriz, Iran.
Department of Chemistry, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran.
الکلمات المفتاحية:
ملخص المقالة :
Dyes are the most important materials in industries which are dangerous to ecological systems due to their toxic properties. This study investigated the photocatalytic efficiency of TiO2 nanoparticles stabilized on a glass plate in order to remove Acid Red1 (AR1) dye in an aqueous solution under UV Light. In this research, the photocatalytic decomposition of the AR1 dye was carried out in a batch tubular reactor with a recirculating flow. Effective parameters on the process such as: the initial pH of the solution, the concentration of AR1, the distance of the lamp from the catalysts’ surface, the concentration of H2O2, and the flow rate were studied. The morphological properties of the Titanium dioxide nanoparticles stabilized on the glass plate were investigated through SEM and AFM. The favorite dye removal efficiency for a solution containing 30 mg/L of AR1 was obtained in the pH of 2.5, H2O2 concentration of 10.12 mM, radiation time of 120 min, and the lamp-catalyst surface distance of 10 cm. In these conditions, the dye removal efficiency became approximately 99%.
1 S. Alizadeh, K. Seyyedi, J. Appl. Chem. Res., 13, 93 (2019).
2. S. Ye, G. Zeng, H. Wu, C. Zhang, J. Liang, J. Dai, M. Cheng, Crit. Rev. Environ. Sci. Technol., 47, 1528 (2017).
3. S. Khoshbin, K. Seyyedi, Lat. Am. Appl. Res., 47, 101-105 (2017).
4. S. Ye, G. Zeng, H. Wu, J. Liang, C. Zhang, J. Dai, J. Yu, Resour. Conserv. Recycl., 140,278 (2019).
5. L. Yu, M. Han, F. He, Arab. J. Chem., 10, 1913 (2017).
6. K. Seyyedi, A. Mahdiyar, Lat. Am. Appl. Res., 45, 139 (2015).
7. S.D. Attri, S. Singh, A. Dhar, S. Powar, J. Clean. Prod., 131849 (2022).
8. M.A. Moghaddam, K. Seyyedi, Water Sci. Technol., 85, 206 (2022).
9. M.C.M. Ribeiro, M.C.V. Starling, M.M.D. Leão, C.C. Amorim, Environ. Sci. Pollut. Res.,24, 6165 (2017).
10. K. Seyyedi, M.A. Farbodnia Jahromi, APCBEE Procedia, 10, 115 (2014).
11. D. Gümüş, F. Akbal, Wat. Air and Soil Poll., 216, 117 (2011).
12. B.L. Alderete, J. Silva, R. Godoi, F.R. Silva, S.R. Taffarel, L.P. Silva, A.L.H. Garcia,H.M. Junior, H.L.N. Amorim, J.N. Picada, Chemosphere, 263, 128291 (2021).
13. M.F. Hanafi, N. Sapawe, Mater. Today: Proc., 31, 141 (2020).
14. M.A. Naghmash, M.M. Ibrahim, Mater. Chem. Phys., 283, 126036 (2022).
15. S.S.A. Amr, H.A. Aziz, M.N. Adlan, S.Q. Aziz, Clean-Soil Air Water, 41, 148 (2013).
16. S. Jagadevan, N.J. Graham, I.P. Thompson, J. Hazard. Mater., 244, 394 (2013).
17. D. Elami and K. Seyyedi, J. Environ. Sci. Health A, 55, 193 (2020).
18. I. Nitoi, T. Oncescu, P. Oancea, J. Ind. Eng. Chem., 19, 305 (2013).
19. T. Ghosh, K.Y. Cho, K. Ullah, V. Nikam, C.Y. Park, Z.D. Meng, W.C. Oh, J. Ind. Eng.Chem., 19, 797 (2013).
20. M.A. Mueses, J.C. Marquez, F.M. Martínez, G.L. Puma, Curr. Opin. Green Sustain., 30,100486 (2021).
21. K. Xie, J. Fang, L. Li, J. Deng, F. Chen, J. Alloys Compd., 901, 163589 (2022).
22. S. Afzal, N.M. Julkapli, L.K. Mun, Mater. Sci. Semicond. Process., 99, 34 (2019).
23. U. Xiong, G. Li, P. Peng, F. Gelman, Z. Ronen, T. An, Chemosphere, 258, 127378 (2020).
24. A.V. Karim, S. Krishnan, A. Shriwastav, J. Indian Chem. Soc., 99, 100480 (2022).
25. T. Xia, Y. Lin, W. Li, M. Ju, Chin. Chem. Lett., 32, 2975 (2021).
26. M.A. Lazar, S. Varghese, S.S. Nair, Catalysts, 2, 572 (2012).
27. M. Sanchez, M.J. Rivero, I. Ortiz, Desalination, 262, 141 (2010).
28. M. Antonopoulou, E. Evgenidou, D. Lambropoulou, I. Konstantinou, Water Res., 53, 215(2014).
29. S. Qi, K. Zhang, Y. Zhang, R. Zhang, H. Xu, Chem. Phys. Lett., 798, 139614 (2022).
30. S.Y. Lee, H.T. Do, J.H. Kim, Appl. Surf. Sci., 573, 151383 (2022).
31. A.E. Mragui, O. Zegaoui, J.C.G. Silva, Chemosphere, 266, 128931 (2021).
32. F. Bashiri, S.M. Khezri, R.R. Kalantary, B. Kakavandi, J. Mol. Liq., 314, 113608 (2020).
33. X. Sun, L. Yan, R. Xu, M. Xu, Y. Zhu, Colloids Surf., 570, 199 (2019).
34. M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, J. Environ. Chem. Eng., 7, 103248(2019).
35. I.K. Konstantinou, T.A. Albanis, Appl. Catal., 49, 1 (2004).
36. A. Mirzaei, M. Eddah, S. Roualdes, D. Ma, M. Chaker, Chem. Eng. J., 422, 130507 (2021).
37. T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Mater. Chem. Phys., 212,325 (2018).
38. M.A. Dengsheng, Y. Huan, L. Cui, L. Xigui, H. Xiuqin, A. Ziwen, L. Ling, F. Yukui, L.Bisheng, Z. Mingming, Q. Lei, L. Shiyu, Y. Lu, Chemosphere, 275, 130104 (2021).
39. P.S. Thind, D. Kumari, S. John, J. Environ. Chem. Eng., 6, 3602 (2018).
40. M. Yasmina, K. Mourad, S.H. Mohammed, C. Khaoula, Energy Procedia, 50, 559 (2014).
41. D. Komaraiah, P. Madhukar, Y. Vijayakumar, M.V.R. Reddy, R. Sayanna, Mater. Today: Proc., 3, 3770 (2016).
42. A. Enesca, M. Baneto, D. Perniu, L. Isac, C. Bogatu, A. Duta, Appl. Catal., 186, 69 (2016).