بررسی تأثیر برخی آلایندههای درون ساختمان بر گیاه سانسوریا (Sansevieria trifasciata L.)
الموضوعات :ویدا اخوان 1 , روحانگیز نادری 2 , الهام دانائی 3 , سپیده کلانهجاری 4 , فرشته نعمتاللهی 5
1 - دانشجوی دکتری، گروه علوم باغی و زراعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد، گروه مهندسی و علوم باغبانی پردیس کشاورزی و منابع طبیعی دانشگاه تهران، البرز کرج پردیس کشاورزی و منابع طبیعی دانشکاه تهران گروه باغبانی
3 - استادیار، گروه علوم باغبانی،
،دانشگاه آزاد اسلامی، واحد گرمسا ر،گرمسار، ایران
4 - استادیار، گروه علوم باغی و زراعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 - استادیار، گروه شیمی، دانشگاه آزاد اسلامی واحد تهران شرق، تهران، ایران
الکلمات المفتاحية: "استون", "بنزن", "متانول", "اتانول", " گیاه زینتی",
ملخص المقالة :
به منظور ارزیابی اثر برخی آلایندهها بر رنگیزههای فتوسنتزی و شاخصهای بروز مقاومت نسبت به تنش در گیاه سانسوریا (Sansevieria trifasciata L.)، آزمایشی به صورت کاملاً تصادفی با 7 تیمار شاهد، بنزن 50 و 25 میلیلیتر در لیتر، استون 50 و 25 میلیلیتر در لیتر، اتانول 50 میلیلیتر در لیتر و متانول 50 میلیلیتر در لیتر با سه تکرار انجام شد. جهت اعمال تیمارها محیطهای بسته اتاقکهای شیشهای با حجم و مساحت یکسان تهیه گردید که هر محفظه شیشهای شامل دریچهای جهت تزریق و یا مکش هوا بود. در هر اتاقک یک گیاه قرار گرفت که حجم گیاه اندازهگیری شد و سپس غلظتهای معینی از آلایندهها به درون اتاقکها تزریق گردید. نتایج نشان داد که آلایندههای گازی مورد ارزیابی تأثیر منفی بر شاخصهای بررسی شده نسبت به شاهد داشتند، اما استون 50 میلیلیتر در لیتر موجب بروز شدیدترین تنش در گیاه سانسوریا و تحریک تولید گونههای اکسیژن فعال و از این طریق موجب افزایش تولید پرولین و نیز با افزایش سیستم دفاعی گیاه سبب افزایش سطح پروتئینها شد. فعالیت فتوسنتزی گیاه سانسوریا نیز تحت تأثیر آلایندههای مورد بررسی افزایش یافت. بر این اساس، به نظر میرسد گیاه سانسوریا مقاومت خوبی نسبت به گازهای غالب موجود در فضای ساختمانی بیمارستانها، آزمایشگاهها و غیره دارد که جهت نگهداری در این مکانها توصیه میگردد.
منابع
1) جلیلیان، ز.، س. سیدنژاد، م. و ح، معتمدی. 1397. تاثیر آلودگی هوا برفعالیت آنتی اکسیدانی دو گیاه کنار (Ziziuph spina –christa) و ناترک (Dodonaea viscosa) رشد یافته در اطراف پالایشگاه نفت. فصلنامه علوم و تکنولوژی محیط زیست، 22(8): 30-16.
2) علومی، ح. و خ. منوچهریکلانتری. 1382. مطالعه اثر کادمیوم کلراید بر پارامترهای رشد، محتوای کلروفیل، کاروتنوئیدها و محتوای قند و پروتئین در گیاهک کلزا (Brassica napus). پژوهش و سازندگی در زراعت و باغبانی. 59: 80-74.
3) نجات، ج. 1393. مطالعه اثر آلودگی هوا بر خصوصیات تشریحی، ریخت شناسی و بیوشیمیایی گونه های خارشتر، یونجه وحشی و اکلیل الملک، رشد یافته در منطقه صنعتی نیشکر هفت تپه. پایان نامه کارشناسی ارشد فیزیولوژی گیاهی. دانشگاه شهید چمران اهواز. 133 صفحه.
4) یارقلی، ب.، عباسی، ف. و ع، لیاقت. 1387. بررسی جذب کادمیوم از محیط ریشه و تجمع آن در اندامهای مختلف محصولات جالیزی رایج در ایران. نشریه پژوهش و سازندگی در زراعت و باغبانی. 58: 78-70.
5) Agbaire, O. P. 2016. Impact of air pollution on proline and soluble sugar content of selected plant species. Chem Mater Res, 8(5): 72-76.
6) Ali, A. A. and El-Yemeni, M. N. 2010. Atmospheric air pollution effects on some exhibited plants at Aljubail Industrial City, KSA. I-Physiological characteristics and antioxidant enzymes. Australian Journal of Basic and Applied Sciences, 4(6): 1251-1263.
7) Areington, C. A. and Varghese, B. 2017. The utility of biochemical, physiological and morphological biomarkers of leaf sulfate levels in establishing Brachylaena discolor leaves as a bioindicator of SO2 pollution. Plant physiology and biochemistry, 118: 295-305.
8) Areington, C. A., Varghese, B. and Ramdhani, S. 2015. An assessment of morphological, physiological and biochemical biomarkers of industrial air pollution in the leaves of Brachylaena discolor. Water, Air, & Soil Pollution, 226(9): 291.
9) Baghali, Z., Majd, A., Chehregani, A., Pourpak, Z., Ayerian, S. and Vatanchian, M. 2011. Cytotoxic effect of benzo (a) pyrene on development and protein pattern of sunflower pollen grains. Toxicological & Environmental Chemistry, 93(4): 665-677.
10) Bates, L. S., Waldren, R. P. and Teare, I. D. 1973 Rapid determination of free proline for water stress studies. Plant and Soil 39: 205-207.
11) Bolden, A. L., Kwiatkowski, C. F. and Colborn, T. 2015. New look at BTEX: are ambient levels a problem?. Environmental science & technology, 49(9): 5261-5276.
12) Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2): 248-254.
13) Brown, N. E. 1915. Sansevieria. A monograph of all the known species. Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew): 185-261.
14) De Kempeneer, L., Sercu, B., Vanbrabant, W., Van Langenhove, H. and Verstraete, W. 2004. Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Applied microbiology and biotechnology, 64(2): 284-288.
15) Duan, J., Fu, B., Kang, H., Song, Z., Jia, M., Cao, D. and Wei, A. 2019. Response of gas-exchange characteristics and chlorophyll fluorescence to acute sulfur dioxide exposure in landscape plants. Ecotoxicology and environmental safety, 171: 122-129.
16) Eevers, N., White, J. C., Vangronsveld, J. and Weyens, N. 2017. Bio-and phytoremediation of pesticide-contaminated environments: a review. In Advances in botanical research, 83: 277-318. Academic Press.
17) Elloumi, N., Zouari, M., Mezghani, I., Ben Abdallah, F., Woodward, S. and Kallel, M. 2017. Adaptive biochemical and physiological responses of Eriobotrya japonica to fluoride air pollution. Ecotoxicology, 26(7): 991–1001.
18) Fusaro, L., Marando, F., Sebastiani, A., Capotorti, G., Blasi, C., Copiz, R. and Manes, F. 2017. Mapping and assessment of PM10 and O3 removal by woody vegetation at urban and regional level. Remote sensing, 9(8): 791.
19) Gong, Y., Zhou, T., Wang, P., Lin, Y., Zheng, R., Zhao, Y. and Xu, B. 2019. Fundamentals of Ornamental Plants in Removing Benzene in Indoor Air. Atmosphere, 10(4): 221.
20) Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M. and Revah, S. 2008. Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnology advances, 26(5): 398-410.
21) Hao, J., Zhu, T. and Fan, X. 2014. Indoor air pollution and its control in China. In Indoor air pollution (pp. 145-170). Springer, Berlin, Heidelberg.
22) Irga, P. J., Paull, N. J., Abdo, P. and Torpy, F. R. 2017. An assessment of the atmospheric particle removal efficiency of an in-room botanical biofilter system. Building and Environment, 115: 281-290.
23) Irga, P. J., Pettit, T., Irga, R. F., Paull, N. J., Douglas, A. N. and Torpy, F. R. 2019. Does plant species selection in functional active green walls influence VOC phytoremediation efficiency?. Environmental Science and Pollution Research, 26(13): 12851-12858.
24) Joshi, N., Chauhan, A. and Joshi, P. C. 2009. Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. The Environmentalist, 29(4): 398-404.
25) Kapoor, C. S., Bamniya, B. R. and Kapoor, K. 2013. Efficient control of air pollution through plants, a cost-effective alternative: studies on Dalbergia sissoo Roxb. Environmental Monitoring and Assessment, 185(9): 7565–7580.
26) Mbugua, P. K. and Moore, D. M. 1996. Taxonomic studies of the genus Sansevieria (Dracaenaceae). In The Biodiversity of African Plants (pp. 489-492). Springer, Dordrecht.
27) McCollum, T. G. and McDonald, R. E. 1991. Electrolyte leakage, respiration, and ethylene production as indices of chilling injury in grapefruit. HortScience, 26(9): 1191-1192.
28) Muhammad, J., Ijaz, M., Salma, P., Tayybah, N., Arshad, A., Sami, U. J. and Shafiq, U. R. 2013. Smoke priming, a potent protective agent against salinity: Effect on proline accumulation, elemental uptake, pigmental attributes and protein banding patterns of rice (Oryza Sativa). Journal of Stress Physiology & Biochemistry, 9(1).
29) Pipal, A. S., Kumar, A., Jan, R. and Taneja, A. 2012. Role of plants in removing indoor air pollutants. In Chemistry of phytopotentials: health, energy and environmental perspectives (pp. 319-321). Springer, Berlin, Heidelberg.
30) Porra, R. J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73: 149-156.
31) Przybysz, A., Wińska-Krysiak, M., Małecka-Przybysz, M., Stankiewicz-Kosyl, M., Skwara, M., Kłos, A. and Sikorski, P. 2020. Urban wastelands: On the frontline between air pollution sources and residential areas. Science of The Total Environment, 721: 137695.
32) Rajput, M. and Agrawal, M. 2004. Physiological and yield responses of pea plants to ambient air pollution. Indian Journal of Plant Physiology, 9: 9-14.
33) Sekine, Y., Katori, R., Tsuda, Y. and Kitahara, T. 2016. Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone. Environmental technology, 37(13): 1647-1655.
34) Seyyednejad, S. M., & Koochak, H. 2011. A study on air pollution effects on Eucalyptus camaldulensis. In International Conference on Environmental, Biomedical and Biotechnology, 16: 98-101.
35) Seyyednejad, S. M., Niknejad, M. and Koochak, H. 2011. A review of some different effects of air pollution on plants. Research Journal of Environmental Sciences, 5(4): 302-309.
36) Singh, S.N. and Verma, A. 2007. Phytoremediation of air pollutants: a review. In Environmental bioremediation technologies. (pp. 293-314). Springer, Berlin, Heidelberg.
37) Siswanto, D. 2017. Potentiality of Plant Combination for Removing Indoor Air Pollutants: Fundamental Physiology of Euphorbia milii, Sansevieria trifasciata, and Dieffenbachia seguine–A Review. Proceeding of The 7th Annual Basic Science International Conference. pp 69-70.
38) Siswanto, D., Permana, B. H., Treesubsuntorn, C. and Thiravetyan, P. 2020. Sansevieria trifasciata and Chlorophytum comosum botanical biofilter for cigarette smoke phytoremediation in a pilot-scale experiment—evaluation of multi-pollutant removal efficiency and CO2 emission. Air Quality, Atmosphere & Health, 13(1): 109-117.
39) Sriprapat, W. and Thiravetyan, P. 2016. Efficacy of ornamental plants for benzene removal from contaminated air and water: Effect of plant associated bacteria. International Biodeterioration & Biodegradation, 113: 262-268.
40) Styszko, K., Samek, L., Szramowiat, K., Korzeniewska, A., Kubisty, K., Rakoczy-Lelek, R. and Giebl, A. K. 2017. Oxidative potential of PM10 and PM2. 5 collected at high air pollution site related to chemical composition: Krakow case study. Air Quality, Atmosphere & Health, 10(9): 1123-1137.
41) Tripathi, A. K. and Gautam, M. 2000. Biochemical parameters of plants as indicators of air pollution. Journal of Environmental Biology, 28(1): 127.
42) Ullah, H., Treesubsuntorn, C. and Thiravetyan, P. 2021. Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO 2 emission. Environmental Science and Pollution Research, 28(1): 538-546.
43) Vorholt, J. A. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology, 10(12): 828-840.
44) Wang, F., Zeng, B., Sun, Z. and Zhu, C. 2009. Relationship between proline and Hg 2+-induced oxidative stress in a tolerant rice mutant. Archives of environmental contamination and toxicology, 56(4): 723.
45) Wang, Y., Zhang, X. L., Hu, Y. B., Teng, Z. Y., Zhang, S. B., Chi, Q. and Sun, G. Y. 2019. Phenotypic response of tobacco leaves to simulated acid rain and its impact on photosynthesis. Int. J. Agric. Biol, 21: 391-398.
46) Wolverton, B. C., Johnson, A. and Bounds, K. 1989. Interior landscape plants for indoor air pollution abatement. NASA Stennis Space Center: New York, NY, USA.
47) Woo, S. Y., Lee, D. K. and Lee, Y. K. 2007. Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalis in polluted and non-polluted areas. Photosynthetica, 45(2):, 293-295.
48) Yan, K., Chen, W., He, X., Zhang, G., Xu, S. and Wang, L. 2010. Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environmental and Experimental Botany, 69(2): 198-204.
49) Yu, B. F., Hu, Z. B., Liu, M., Yang, H. L., Kong, Q. X. and Liu, Y. H. 2000. Review of research on air-conditioning systems and indoor air quality control for human health. International journal of refrigeration, 32(1): 3-20.
50 ) Zheng, Y. H., Li, X., Li, Y. G., Miao, B. H., Xu, H., Simmons, M. and Yang, X. H. 2012. Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution. Plant Physiology and Biochemistry, 52: 169-178.