بررسی مقاومت داروئی جدایههای اشریشیا کلای از ضایعات تیپیک کلی باسیلوز طیور و جستجوی ژنهای مقاومت به فلورفنیکل (floR, fexA, cfr) و کلیستین (mcr-1) در بین جدایهها
الموضوعات :پگاه والی تبار 1 , سید مصطفی پیغمبری 2 , جمشید رزم یار 3 , عباس برین 4 , اعظم یزدانی 5 , فتانه نادری نژاد 6
1 - گروه بیماریهای طیور ، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران
2 - استادگروه بیماریهای طیور ، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران
3 - دانشیار گروه بیماریهای طیور ، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران
4 - استادیارگروه کلینیکال پاتولوژی، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران
5 - گروه بیماریهای طیور ، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران
6 - گروه بیماریهای طیور ، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران
الکلمات المفتاحية: فلورفنیکل, مقاومت داروئی, کلیستین, اشریشیا کلای, کلی باسیلوز,
ملخص المقالة :
اشریشیا کلای، عامل بیماری کلیباسیلوز در طیور میباشد که خسارات سنگینی را به صنعت طیور تحمیل مینماید و از دلایل اصلی مصرف دارو و رخداد بیشتر مقاومت داروئی است. به منظور کاهش مقاومت داروئی به عنوان یک مشکل جهانی و برقراری هر چه بیشتر سلامت انسان، حیوان و محیط زیست، بررسی دورهای میزان مقاومتهای داروئی ضروری است. هدف از این مطالعه بررسی میزان مقاومت جدایههای اشریشیا کلای طیور گوشتی به ترکیبات ضدمیکروبی و همچنین ردیابی ژنهای مقاومت فلورفنیکل (cfr, fexA, floR) و کلیستین(mcr-1) در بین جدایهها بود. تعداد 100 جدایه از اشریشیا کلای بهدست آمده از جراحات تیپیک کلیباسیلوز از طیور ارجاع شده به یک آزمایشگاه خصوصی شهر تهران و بانک ذخیرهی دانشگاه جمعآوری و مقاومت داروئی به 16 ترکیب ضدمیکروبی شامل آمپیسیلین، نئومایسین، جنتامایسین، انروفلوکساسین، فلومکوئین، دی-فلوکساسین، کلرامفنیکل، فلورفنیکل، فوزباک، اریترومایسین، کلیستین، تتراسایکلین، اکسیتتراسایکلین، تری متوپریم+سولفا، لینکواسپکتین و داکسیسایکلین، با روش دیسک دیفیوژن انجام پذیرفت. سپس، DNA کروموزومی و پلاسمیدی جدایهها استخراج و ژنهای مقاومت فلورفنیکل (cfr ,fexA ,floR) و کلیستین (mcr-1) در بین تمامی جدایهها با روش PCR ردیابی شد. بر اساس نتایج آزمایش حساسیت داروئی، بیشترین میزان مقاومت بهدست آمده مربوط به اریترومایسین، داکسیسایکلین و تتراسایکلین و کمترین مقاومت مربوط به سه ترکیب لینکواسپکیتن، جنتامایسین و فوزباک بود. همهی جدایهها حداقل به یک ترکیب ضدمیکروبی و 10% جدایهها حداقل به 12 ترکیب ضدمیکروبی مقاوم بودند. در این مطالعه 16% از جدایهها دارای الگوی مقاومت یکسان و 35% جدایهها هرکدام دارای الگوی مقاومت جداگانهای بودند. همچنین از بین 85 جدایه در این مطالعه، 40% و 94/52% جدایهها ژن مقاومت به floR را، به ترتیب، بر روی پلاسمید و کروموزوم خود داشتند و هیچ جدایهای از نظر وجود ژن-های مقاومتfexA ، cfr و mcr-1 مثبت نبود. نتایج این مطالعه مقاومت بالای جدایههای اشریشیا کلای بهدست آمده از موارد کلیباسیلوز طیور را به ترکیبات رایج ضدمیکروبی در صنعت طبور ایران نشان داد. ردیابی ژنهای مقاومت آگاهی محققین را در خصوص اپیدمیولوژی مقاومت داروئی افزایش میدهد. این اطلاعات لزوم اجرای برنامههای مدیریتی صحیح برای مرغداریها و مصرف درمانی منطقی ترکیبات ضدمیکروبی را در کنار پایش دورهای میزان مقاومتها خاطرنشان میسازد.
1. Adesoji, A.T., Call, D.R. (2020). Molecular analysis of florfenicol-resistant bacteria isolated from drinking water distribution systems in Southwestern Nigeria. Journal of Global Antimicrobial Resistance, 23: 340-344. http://doi.org/10.1016/j.jgar.2020.10.005
2. Awad, A., Arafat, N., Elhadidy, M. (2016). Genetic elements associated with antimicrobial resistance among avian pathogenic Escherichia coli. Annals of Clinical Microbiology and Antimicrobials, 15: 59. http://doi.org/10.1186/s12941-016-0174-9
3. Azam, M., Ehsan, I., Sajjad Ur, R., Saleemi, M.K., Javed, M.R., Mohsin, M. (2017). Detection of the colistin resistance gene mcr-1 in avian pathogenic Escherichia coli in Pakistan. Journal of Global Antimicrobial Resistance, 11: 152–153. http://doi.org/10.1016/j.jgar.2017.10.012
4. Barbieri, N.L., Nielsen, D.W., Wannemuehler, Y., Cavender, T., Hussein, A., Yan, S.G., Logue, C.M. (2017). mcr-1 identified in avian pathogenic Escherichia coli (APEC). PLoS One, 12: e0172997. http://doi.org/10.1371/journal.pone.0172997
5. Bista, S., Shrestha, U.T., Dhungel, B., Koirala, P., Gompo, T.R., Shrestha, N., Adhikar, N., Joshi, D.R., Banjara, M.R., Adhikari, B., Rijal, K.R. Ghimire, P. (2020). Detection of plasmid-mediated colistin resistant mcr-1 gene in Escherichia coli isolated from infected chicken livers in Nepal. Animals (Basel), 10: 2060. http://doi.org/10.3390/ani10112060
6. Braibant, M., Chevalier, J., Chaslus-Dancla, E., Pagès, J.M., Cloeckaert, A. (2005). Structural and functional study of the phenicol-specific efflux pump FloR belonging to the major facilitator superfamily. Antimicrobial Agents and Chemotherapy, 49: 2965–2971. http://doi.org/10.1128/AAC.49.7.2965-2971.2005
7. Castanheira, M., Griffin, M.A., Deshpande, L.M., Mendes, R.E., Jones, R.N., Flamm, R.K. (2016). Detection of mcr-1 among Escherichia coli clinical isolates collected worldwide as part of the SENTRY antimicrobial surveillance program in 2014 and 2015. Antimicrobial Agents and Chemotherapy, 60: 5623–5624. http://doi.org/10.1128/AAC.01267-16
8. CLSI. (2018). Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100. Wayne, PA, USA.
9. CLSI VET. (2018). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 5th ed. CLSI VET01. Wayne, PA, USA.
10. Ghaniei, A., Peighambari, S.M. (2012). Antimicrobial susceptibility of one thousand bacterial isolates to five antibacterial agents commonly used in the Iranian poultry industry. Iranian Journal of Veterinary Medicine, 6: 1-5. http://doi.org/10.22059/ijvm.2012.24617
11. Joshi, P.R., Thummeepak, R., Leungtongkam, U., Pooarlai, R., Paudel, S., Acharya, M., Dhital, S., Sitthisak, S. (2019). The emergence of colistin-resistant Escherichia coli in chicken meats in Nepal. FEMS Microbiology Letters, 366: fnz237. http://doi.org/10.1093/femsle/fnz237
12. Khoshkhoo, P.H., Peighambari, S.M. (2004). Characteristics of Escherichia coli isolated from cases of avian colibacillosis. Journal of Faculty of
Veterinary Medicine, University of Tehran, 59: 233-240.
13. Li, P., Zhu, T., Zhou, D., Lu, W., Liu, H., Sun, Z., et al. (2020). Analysis of resistance to florfenicol and the related mechanism of dissemination in different animal-derived bacteria. Frontiers in Cellular and Infection Microbiology, 10: 369. http://doi.org/10.3389/fcimb.2020.00369
14. Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16: 161–168. http://doi.org/10.1016/S1473-3099(15)00424-7
15. Long, K.S., Poehlsgaard, J., Kehrenberg, C., Schwarz, S., Vester, B. (2006). The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrobial Agents and Chemotherapy, 50: 2500–2505. http://doi.org/10.1128/AAC.00131-06
16. McGann, P., Snesrud, E., Maybank, R., Corey, B., Ong, A.C., Clifford, R., et al. (2016). Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the USA. Antimicrobial Agents and Chemotherapy, 60: 4420-4421. http://doi.org/10.1128/AAC.01103-16
17. Mohamed, M.A., Shehata, M.A., Rafeek, E. (2014). Virulence genes content and antimicrobial resistance in Escherichia coli from broiler chickens. Veterinary Medicine International, 2014: 195189. http://doi.org/10.1155/2014/195189
18. Nair, D.V.T., Venkitanarayanan, K., Kollanoor, J.A. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7: 167. http://doi.org/10.3390/foods7100167
19. Newton-Foot, M., Snyman, Y., Maloba, M.R.B., Whitelaw, A.C. (2017). Plasmid-mediated mcr-1 colistin resistance in Escherichia coli and Klebsiella spp. clinical isolates from the Western Cape region of South Africa. Antimicrobial Resistance & Infection Control, 6: 78. http://doi.org/10.1186/s13756-017-0234-8
20. Nolan, L.K., Barnes, H.J., Abdul-Aziz, T.A., Logue, C.M., Vaillancourt, J.P. (2015). Colibacillosis. In: Brugère-Picoux, J. et al. (eds), Manual of Poultry Diseases, 1st edition. AFAS. Paris, France. p. 300-315.
21. Nolan, L.K., Vaillancourt, J.P., Barbieri, N.L., Logue, C.M. (2020). Colibacillosis. In: Swayne, D.E. et al. (eds), Diseases of Poultry, 14th edition.Wiley-Blackwell Publication. NJ, USA. p. 770-830.
22. Peighambari, S.M., Sorahi Nobar, M., Morshed, R. (2015). Detection of Salmonella entrica serovar Infantis among serogroup C Salmonella isolates from poultry using PCR and determination of drug resistance patterns. Iranian Veterinary Journal, 11: 54-60. http://doi.org/10.22055/ivj.2015.10112
23. Sambrook, J., Russell, D.W. (2001). Molecular Cloning: A laboratory manual. Cold Spring Harbour, NY.
24. Shen, Z., Wang, Y., Shen, Y., Shen, J., Wu, C. (2016). Early emergence of mcr-1 in Escherichia coli from food-producing animals. The Lancet Infectious Diseases, 16: 293. http://doi.org/10.1016/S1473-3099(16)00061-X
25. Usui, M., Nozawa, Y., Fukuda, A., Sato, T., Yamada, M., Makita, K., Tamura, Y. (2021). Decreased colistin resistance and mcr-1 prevalence in pig-derived Escherichia coli in Japan after banning colistin as a feed additive. Journal of Global Antimicrobial Resistance. 24: 383-386. http://doi.org/10.1016/j.jgar.2021.01.016.
26. Wang, Y., Lv, Y., Cai, J., Schwarz, S., Cui, L., Hu, Z., et al. (2015). A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. Journal of Antimicrobial Chemotherapy, 70: 2182–2190. http://doi.org/10.1093/jac/dkv116
27. Zhang, P., Shen, Z., Zhang, C., Song, L., Wang, B., Shang, J., Yue, X., Qu, Z., Li, X., Wu, L., et al. (2017). Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015. Veterinary Microbiology, 203: 49–55. http://doi.org/10.1016/j.vetmic.2017.02.008
28. Zhua, T., Liu, S., Ying, Y., Xu, L., Liu, Y., Jin, J., et al. (2020). Genomic and functional characterization of fecal sample strains of Proteus cibarius carrying two floR antibiotic resistance genes and a multi resistance plasmid-encoded cfr gene. Comparative Immunology, Microbiology & Infectious Diseases, 69: 101427. http://doi.org/10.1016/j.cimid.2020.101427