پیش بینی تغییرات پارامتر رسانایی الکتریکی در آب زیر زمینی شهر تهران با کمک شبکه عصبی مصنوعی
الموضوعات :ناصر مهردادی 1 , غلام رضا نبی بید هندی 2 , اکبر باغوند 3 , حمید زارع ابیانه 4 , پویان عباسی مائده 5
1 - استاد دانشکده محیط زیست دانشگاه تهران .
2 - استاد دانشکده محیط زیست دانشگاه تهران .
3 - دانشیار دانشکده محیط زیست دانشگاه تهران
4 - دانشیار گروه مهندسی آب دانشکدة کشاورزی، دانشگاه بوعلی سینا همدان
5 - دانشجوی کارشناسی ارشد پردیس ارس دانشگاه تهران*(مسئول مکاتبات).
الکلمات المفتاحية: شبکه عصبی مصنوعی, تهران, آب زیر زمینی, رسانایی الکتریکی, پیش بینی,
ملخص المقالة :
جهت بررسی کیفیت آب زیر زمینی تهران با توجه به برداشت 10 سال گذشته از پارامتر های هیدروشیمیایی مربوط به 71 نقطه مختلف از شهر تهران سه مدل مختلف شبکه عصبی مصنوعی با تعداد پارامتر های مختلف ورودی و خروجی پارامتر رسانایی الکتریکی تعریف گردید. مشاهده می شود که به جهت تخمین پارامتر رسانایی الکتریکی با سعی و خطای فراوان تابع محرک تانژانت با تابع آموزش مومنتم دارای خطای کمی خواهند بود. با کمتر کردن مقدار پارامتر های ورودی و ثابت نگه داشتن تابع آموزش به مومنتوم و تابع محرک به تانژانت و تغییرات در مقدار پردازنده های داخلی شبکه عصبی میزان خطا کاسته خواهد شد و در نهایت سه مدل با یک لایه پنهان و تابع آموزش مومنتوم و تابع محرک تانژانت ساخته شد.حداکثر خطای نتایج به دست آمده نشان دهنده میزان بیشینه ضریب تعیین برابر 0.986می باشد که مربوط به مدل های 1 و 3 با تعداد پارامتر بیشتر می باشد. همچنین با توجه به شبکه عصبی ساخته شده در یک لایه کمترین میزان کمینه ی نرمال ریشه ی میانگین مربعات خطا برابر 0.110 در مدل های 1 و 3 خواهد بود، با توجه به تعداد ورودی های کمتر مدل شماره 2 و خطاهای با تقریب بسیار نزدیک به این دو مدل با میزان بیشینه ضریب تعیین برابر 96/0 و میزان کمینه ی نرمال ریشه ی میانگین مربعات خطا برابر 176/0 تقریب بسیار مناسب و قابل قبول خواهد بود و از میزان ورودی و آزمایشات جهت اندازه گیری پارامتر ورودی کاسته خواهد شد. در بحث تاثیر گذاری پارامتر ها در پیش بینی با شبکه عصبی مشخص می شود که میزان اهمیت دو یون سولفات و کلراید با اهمیت تر از پارامتر سدیم می باشند.
- Esmaeili Varaki, M., Khayat khalaghi, M. and Shafiei, M. 2004. Provide a Model for Intelligent Water Level Fluctuations Estimated Alluvial Groundwater Aquifer Using an Artificial Neural Network. Articles First Annual Conference of Iran Water Resources Management. 1-11.
- Baghvand, A., Nasrabadi, T., Nabi Bidhendi, G.R., Vosoogh, A., Karbassi, A.R., Mehrdadi, N. 2010. Groundwater quality degradation of an aquifer in Iran central desert. Desalination. 260: 264–275.
- Jamshidzadeh, Z., Mirbagheri, S. A. 2011. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination, 270: 23–30.
- Mehrdadi, N., Hasanlou, H., Jafarzadeh, M.T., Hasanlou, H., Abodolabadi, H. 2012. Simulation of low EC and biological units of fajr industrial wastewater Treatment plant using artificial neural network and principal component analysis hybrid method. journal of water resource and protection. 4: 370-376.
- Tahmasebi, A.R. and Zomorrodian, S.M.A. 2004. Estimation of Soil Liquefaction Potential Using Artificial Neural Network. Second National Student Conference on Water and Soil Resources.
- Coulibaly, P., Anctil, F., Aravena, R. and Bobée, B. 2001. Artificial Neural Network Modeling of Water Table Depth Fluctuations. Water Resources Research. 37(4): 885-896.
- Dehghani, A.A., Asgari, M. and Mosaedi, A. 2009. Comparison of Geostatistics, Artifitial Neural Networks and Adaptive Neuro-Fuzzy Inference System Approaches in Groundwater Level Interpolation (Case study: Ghazvin aquifer). Journal of Agriculture Science Natural Resource.16 (1): 517-528.
- Coppola, E., Szidarovszky, F., Poulton, M. and Charles, E. 2003. Artificial Neural Network Approach for Predicting Transient Water Levels in a Multi Layered Groundwater System under Variable State. Pumping, and Climate Conditions, Hydrologic Engineering. 8 (6): 348-360.
- Hosaini, M.T., Siosemarde, A. Fathi, P. and Siosemarde, M. 2007. Application of Artificial Neural Networks (ANN) and Multiple Regressions for Estimating Assessing the Performance of Dry Farming Wheat Yield in Ghorveh Region, Kurdistan Province. Agricultural Research: Water and Soil and Plant. 7 (1): 41-54.
- Kumar, M., Raghuwanshi, N., Singh, R., Wallender, W. and Pruitt, W. 2002. Estimating Evapotranspiration Using Artificial Neural Networks. Journal of Irrigation and Drainage Engineering, ASCE. 128 (4): 224-233.
- Khalili, S.R., Davari, K. and Mousavi Baygi, M. 2008. Monthly Precipitation Forecasting Using Artificial Neural Networks: A Case Study for Synoptic Station of Mashad. Journal Water and Soil, Agricultural Science & Technology Ferdowsi University of Mashhad. 22(1): 39-99.
- Asadpour, G.A., Nasrabadi, T. 2011. Municipal and medical solid waste management in different districts of Tehran, Iran. Fresenius Environmental Bulletin. 20 (12): 3241-3245.
- Nasrabadi, T., Nabi Bidhendi, G.R., Yavari., A.R, Mohammadnejad, S. 2008. Evaluating Citizen Attitudes and Participation in Solid Waste Management in Tehran, Iran. Journal of Environmental Health. 71 (5): 30-33.
- Biswas, A. 2005. An Assessment of Future Global Water Issues. Water Resources Development Journal. 21 (2): 229-237.
- Mehrdadi, N., Nabi bidhendi, G.R., Nasrabadi, T., Hoveidi, H., Amjadi, M., Shojaee, M.A.2009. Monitoring the arsenic concentration in groundwater resources, case study: Ghezel ozanWater Basin, Kurdistan, Iran. Asian Journal of Chemistry 21 (1): 446-450.
- Zare Abyaneh, H., Bayat Varkeshi, M., and Daneshkare Arasteh, P. 2011. Forecasting Nitrate Concentration in Groundwater using Artificial Neural Network and Linear Regression Models. International Agrophysics. 25 (2): 187-192.
- Zare abyaneh, H., Yazdani, V. and Azhdari, KH. 2009. Comparative Study of Four Meteorological Drought Index Based on Relative Yield of Rain Fed Wheat in Hamedan Province. Physical Geography Research Quarterly. 69: 35-49.
- Zare Abyaneh, H., Bayat Varkeshi, M., Marofi, S. and Amiri Chayjan, R. 2010. Evaluation of Artificial Neural Network and Adaptive Neuro Fuzzy Inference System in Decreasing of Reference Evapotranspiration Parameters. Journal of Water and Soil. 24 (2): 297-305.
- Asghari Moghaddam, A., Nadiri, A. and Fijani, E. 2006. Ability to Study Different Models of Artificial Neural Networks to Evaluate Groundwater Water Level in the Hard Formation, Tenth. Conference of Geological Society, Tehran.
- مهردادی ن، عباسی مائده پ .1391. کیفی آب زیر زمینی شهر تهران به کمک شاخص جهانی WHO ، نشریه بین المللی عمران آب شماره 64 .
- Sreekanth, P.D., Geethanjali, N., Sreedevi, P.D., Shakeel Ahmed, N. and Kamala Jayanthi, P.D. 2009. Forecasting Groundwater Level Using Artificial Neural Networks. Current Science. 96 (7): 933- 939.