برآورد میزان کربن ترسیبشده توسط گونه آتریپلکسکانیسنس در واحد سطح و نیز بررسی ارتباط میزان ترسیبکربن با عوامل خاک و پوشش گیاهی در منطقه چشمهعلی قزوین (Atriplex canescens)
الموضوعات :ضیاء‎الدین باده ‏یان 1 , معصومه منصوری 2
1 - استادیار گروه جنگلداری، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران.
2 - دکتری جنگلشناسی و اکولوژی جنگل، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران. *(مسوول مکاتبات
الکلمات المفتاحية: خاک, اراضی مرتعی, ترسیب کربن, زیتوده,
ملخص المقالة :
اکوسیستمهای مرتعی به دلیل دربرداشتن بخش قابل توجهی از اراضی جهان، پتانسیل بالایی در ترسیبکربن دارند. این تحقیق به بررسی پتانسیل ترسیبکربن گونه آتریپلکس کانیسنس (Atriplex canescens) که در منطقه چشمهعلی در استان قزوین که در قالب بلوکهای کاملاً تصادفی و در سه تکرار کاشته شده بود، می پردازد. نمونهبرداریها از تیمارهای اصلی فواصل کاشت بوته (تراکم) در دو سطح 2×2 متر و 4×4 متر که هر تیمار اصلی شامل تیمارهای فرعی ارتفاع هرس در چهار سطح تیمار نظیر بدون هرس یا شاهد، هرس کامل یا کفبر، هرس از ارتفاع 20 سانتیمتر و هرس از ارتفاع 40 سانتیمتر بودند صورت گرفت. مقادیر کربن در بیوماس هوایی، زیرزمینی و خاک به تفکیک تیمارهای اصلی و فرعی محاسبه گردید. نتایج نشان داد که اختلاف معنیداری بین کربن زیتوده هوایی و زیرزمینی درواحد سطح در تیمار اصلی تراکم 2×2 متر از تراکم 4×4 متر وجود دارد. همچنین تیمارهای بدون هرس (شاهد) و هرس از ارتفاع 40 سانتیمتر با قرار گرفتن در یک سطح، نسبت به سایر تیمارهای ارتفاع هرس وضعیت بهتری داشتند. بین تیمارهای اصلی تراکم و همچنین تیمارهای فرعی ارتفاع هرس بهلحاظ ترسیبکربن کل خاک اختلاف معنیداری وجود ندارد. میانگین ترسیب کربن کل در تراکم 2×2 متر، 16/59 تن در هکتار و در تراکم 4×4 متر، 81/59 تن در هکتار بوده است. تجزیه همبستگی نشان داد که بین میزان کربن ترسیب شده کل و کربن آلی رابطه مثبت و معنی داری وجود دارد. بنابراین میتوان بیان داشت که مدیریت مناسب اراضی مرتعی، تأثیر قابل توجهی در افزایش ذخیرهکربن در گیاه و خاک خواهد داشت.
1- عبدی، ن، 1384، «برآورد ظرفیت ترسیب کربن توسط جنس گون در استان های مرکزی و اصفهان»، رساله دکتری، علوم مرتع، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، 194 ص.
2- Adams, J., Fair, H., Rechard, L., McAlad, M. and Woodward, F.L. (1990). Increases in terrestrial carbon storage from the last glacial maximum to the present, Nature, 348: 711-714.
3- Gao, Y.H., Luo, P., Wu. N. Chen, H. and Wang, G.X. (2007). Grazing intensity impacts on carbon sequestration in an Alpine Meadow on the Eastern Tibetan plateau, Research Journal of Agriculture and Biological Sciences, 3(6): 642-647.
4- Derner, J.D. and Schuman, G.H. (2007). Carbon sequestration and rangelands: A Synthesis of land Management and precipitation effects, Journal of Soil and Water Conservation, 62 (2): 77-85.
5- Luciuk, G.M., Bonneau, M.A., M. Boyle, D. and Vibery, E. (2000). Prairie Farm Rehabilitation. Administration Paper، Carbon Sequestration-Additional Environmental Benefits of Forests in the PFRA.
6- Aradottir, A., Savarsdottir, L., Kristin, H., Jonsson, P. and Gudbergsson, G. (2000). Carbon accumulation in vegetation and solids by reclamation of degraded areas, Icelandic Agricultural Sciences, 13: 99-113.
7- بردبار، ک و مرتضوی جهرمی، م، 1385، «بررسی پتانسیل ذخیرهکربن در جنگل کاریهای اکالیپتوس و آکاسیا در مناطق غربی استان فارس»، مجله پژوهش و سازندگی: 1 (3)، ص 23-13.
8- Ojima, D. (2000). Carbon storage in land under cropland and rangeland management. Advances in Terrestrial Ecosystem Carbon Inventory, Measurments and Monitoring Conference in Raleigh NorthCarolina, 73-80.
9- Kilbride, C.M., Byrne, K.A. and Gardiner, J.J. (1999). Carbon sequestration and Irish forests, Dublin Coford, 37 p.
10- Batjes, N.H. (1998). Mitigation of atoms pheric cor concentration by increased carbon sequestion in the soil, Biology and fertility of soils, 7: 230-235.
11- جعفری حقیقی، م، 1382. روشهای تجزیه خاک نمونهبرداری و تجزیه های مهم فیزیکی و شیمیایی، انتشارات ندای ضحی، 236 ص.
12- Mahdavi, M., Arzani, H., Farahpoor, M., Malekpoor, B., Joury, M.H. and Abedi, M. (2007). Efficiency investigation of Rangeland inventory with Rangeland health method, Gorgan Journal of Agricultural Sciences and Natural Resources, 14(1):158-173, special issue.
13- نوبخت، ع، پورمجیدیان، م، حجتی، م و فلاح، ا، 1390، «مقایسه مقدار ترسیبکربن خاک در جنگلکاریهای خالص سوزنیبرگ و پهنبرگ (مطالعه موردی: طرح جنگلداری دهمیان، مازندران)»، مجله جنگل ایران، انجمن جنگلبانی ایران، 3(1): 2 -13.
14- زرین کفش، ، 1372، «خاکشناسی کاربردی»، انتشارات دانشگاه تهران، 247 ص.
15- محمودیطالقانی، ع، زاهدیامیری، ق، عادلی، ا و ثاقبطالبی، خ، 1386، «برآورد ترسیب کربن خاک در جنگلهای تحت مدیریت (مطالعه موردی: جنگل گلبند در شمال کشور»، فصلنامه جنگل و صنوبر، 252-241.
16- Park، G.S. and Ohga, S. (2004). Effects of Cutting Cycle and Spacing on Carbon of Willow, Journal Fac Agric Kyushu Univ, 49: 13-24.
17- Post, W.M and Kwon, K.C. (2000). Soil carbon sequestration and land-use change, processes and potential, Global Change Biology, 6(3): 317-327.
18- Frank, A.B. and Karn, J.F. (2003). Vegetation indices, CO2 Flux, and biomass for Northern planis grassland, Journal of Range Management, 55: 16-22.
19- Singh, G.، Bala, N. Chaudhuri, K.K. and Meena, R.L. (2003). Carbon sequestration potential of common access resources in arid and semi-arid regions of northwestern India, Indian Forester, 129(7): 859-864.
20- Fang، S., Xue، J. and Tang, L. (2006). Biomass production and carbon sequestration potential in poplar plantations with different management patterns, Journal of Environmental Management, 85: 672-679
21- Laclau, P. (2003). Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia, Forest Ecology and Management, 180(1-3): 317-333.
22- عبدی، ن، مداح عارفی، ح و زاهدیامیری، ق، 1387، «برآورد ظرفیت ترسیبکربن در گو نزارهای استان مرکزی (مطالعه موردی: منطقه مالمیر شهرستان شازند)»، فصلنامه علمی-پژوهشی تحقیقات مرتع و بیابان ایران، 15(3): ص 282-269.
23- Snorrason, A., Sigurdsson, B.D., Gudbergsson, G., Svavarsdottir, K. and Jonsson, T.H.H. (2002). Carbon sequestration in forest plantations in Iceland, Buvisindi, 15: 81-93.
24- Turner, D.P. and Koerper, G.J. (1995). A carbon budjet for forests of the conterminous United States, Ecological Applications, 5 (2): 421-436.
_||_