گلومالین تولیدی توسط قارچ های آربوسکولار مایکوریزا؛ مولکول کلیدی در تثبیت فلزهای سمی در خاک آلوده
الموضوعات :
الهام ملک زاده
1
1 - استادیار گروه مهندسی علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
تاريخ الإرسال : 08 السبت , شعبان, 1440
تاريخ التأكيد : 03 الإثنين , محرم, 1441
تاريخ الإصدار : 23 الأربعاء , ذو القعدة, 1443
الکلمات المفتاحية:
سلامت خاک,
زیست پالایی,
کمپلکس گلومالین-فلز,
همزیستی مایکوریزی,
ملخص المقالة :
زمینه و هدف: در دهه های اخیر، آلودگی محیط زیست، به ویژه خاک به فلزهای سمی در سطح جهانی افزایش چشمگیری داشته است. ورود فلزهای سمی به خاک از منابع مختلف، تهدیدی همیشگی و جدی برای سلامت گیاهان، جانوران و جوامع انسانی است. زیست پالایی با به کارگیری میکروارگانیسم های مفید خاکزی باعث افزایش راندمان پالایش مناطق آلوده به فلز می گردد و جایگزین مناسبی برای روش های پالایش فیزیکوشیمیایی شناخته شده می باشد.
روش بررسی: قارچ های آربوسکولار مایکوریزا (AM) در اکوسیستم های مختلف دنیا از جمله در خاک های آلوده به فلزهای سمی حضور دارند. این قارچ ها توسط مکانیسم های مختلفی فلزهای سمی را در اندام های قارچی درون و برون ریشه ای غیرپویا کرده و علاوه بر کاهش اثر سمی فلزها بر گیاه میزبان، از ورود آن به زنجیره های غذایی بالاتر ممانعت به عمل می آورند. مقاله حاضر، به نقش گلومالین به عنوان مولکول مهم دیواره سلولی اسپور و هیف های قارچ AM در خاک های آلوده به فلزات سمی پرداخته است.
یافته ها: نتایج نشان داد، گلومالین به عنوان محصول اختصاصی قارچ های AM، در نقش یک پروتئین شوک حرارتی و نیز ترکیب عمده و اصلی در دیواره هیف و اسپورها حضور دارد.
نتیجه گیری: گلومالین از طریق کاهش خطر سمیت و قابلیت دسترسی زیستی فلزها برای گیاهان و سایر موجودات، در حفظ و ارتقای سلامت خاک نقش مهم و کلیدی ایفا می کند.
المصادر:
1- Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W,. et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22): 8599-605.
2- Hammer, E. C., and Rillig, M. C., 2011. The Influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus- salinity increases glomalin content. PLoS One, 6(12): 1-5, 2011.
3- USEPA, 1997. Report: recent Developments for In Situ Treatment of Metals contaminated Soils, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.
4- Soleimani, M., Akbar, S., Hajabbasi, M. A., 2011. Enhancing Phytoremediation Efficiency in Response to Environmetal Pollution Stress. In: Vasanthaiah, H. K. N., Kambiranda, D. M., (Eds.). Plants and Environment. In Tech-Open Access Publisher, pp. 1-14.
5- Sheikh-Assadi, M., Khandan-Mirkohi, A., Alemardan, A., and Moreno-Jiménez, E., 2015. Mycorrhizal Limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. International Journal of Phytoremediation, 17 (6): 556–562.
6- Wu, S., Zhang, X., Chen, B., Wu, Z., Li, T., Hu, Y., Sun, Y., and Wang, Y., 2016. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany, 122: 10–18.
7- Ferrol, N., Tamayo, E., and Vargas, P. 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany. 67 (22): 6253-6265.
8- Wright, S. F., Franke-Snyder, M., Morton, J. B., and Upadhyaya, A., 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181: 193-203.
9- Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., and Nichols, K. A., 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130: 317-323.
10- Cornejo, P., Meier, S., Borie, G., Rillig, M. C., and Borie, F., 2008. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment, 406: 154-160.
11- Vodnik, D., Grčman, H., Maček, I., van Elteren, J. T., and Kovačevič, M., 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392: 130-136, 2008.
12- Rosier, C. L., Hoye, A. T., and Rillig, M. C., 2006. Glomalin-related soil protein: Assessment of current detection and qualification tools. Soil Biology and Biochemistry, 38: 2205-2211.
13- Nichols, K.A., and Wright, S.F. 2005. Comparison of glomalin and humic acid in eight native United State soils. Soil Science. 170 (12): 985-997.
14- Gadkar, V., and Rillig, M. C., 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiology Letters, 263: 93-101.
15- Malekzadeh, E., Aliasgharzad, N., Majidi, J., Abdolalizadeh, J., Aghebati-Maleki, L., 2016 a. Contribution of glomalin to Pb sequestration by arbuscular mycorrhizal fungus in a sand culture system with clover plant. European Journal of Soil Biology, 74: 45-51.
16- Malekzadeh, E., Aliasgharzad, N., Majidi, J., Aghebati-Maleki, L., Abdolalizadeh, J., 2016 b. Cd-induced production of glomalin by arbuscular mycorrhizal fungus (Rhizophagus irregularis) as estimated by monoclonal antibody assay. Environmental Science and Pollution Research, 23: 20711-20718.
17- Rillig, M. C., and Steinberg, P. D., 2002. Glomalin production by an arbuscular mycorrhizal fungus, a mechanism of habitat modification? Soil Biology and Biochemistry, 34 (9): 1371-1374.
18- Vaidya, G. S., Rillig, M. C., and Wallander, H., 2011. The role of glomalin in soil erosion. Scientific World, 9(9): 82-85.
19- Ferreira, A. S., Totola, M. R., Kasuya, M. C. M., Araujo, E. F., and Borges, A.C., 2005. Small heat shock proteins in the development of thermotolerance in Pisolithu Journal of Thermal Biology, 30 (8): 595–602.
20- Purin, S., and Rillig, M. C., 2008. Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biology and Biochemistry, 40 (4): 1000-1003.
21- Gil-Cardeza, M. L., Ferri, A., Cornejo, P., and Gomez, E., 2014. Distribution of chromium species in a Cr-polluted soil: presence of Cr(III) in glomalin related protein fraction. Science of the Total Environment, 493: 828–833.
22- González-Guerrero, M., Melville, L. H., Ferrol, N., Lott, J .N. A., Azcón-Aguilar, C., and Peterson, R. L., 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology, 54 (2): 103–10.
23- Nayuki, K., Chen, B., Ohtomo, R., and Kuga, , 2014. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments, 29: 60–66.
_||_
1- Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W,. et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22): 8599-605.
2- Hammer, E. C., and Rillig, M. C., 2011. The Influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus- salinity increases glomalin content. PLoS One, 6(12): 1-5, 2011.
3- USEPA, 1997. Report: recent Developments for In Situ Treatment of Metals contaminated Soils, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.
4- Soleimani, M., Akbar, S., Hajabbasi, M. A., 2011. Enhancing Phytoremediation Efficiency in Response to Environmetal Pollution Stress. In: Vasanthaiah, H. K. N., Kambiranda, D. M., (Eds.). Plants and Environment. In Tech-Open Access Publisher, pp. 1-14.
5- Sheikh-Assadi, M., Khandan-Mirkohi, A., Alemardan, A., and Moreno-Jiménez, E., 2015. Mycorrhizal Limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. International Journal of Phytoremediation, 17 (6): 556–562.
6- Wu, S., Zhang, X., Chen, B., Wu, Z., Li, T., Hu, Y., Sun, Y., and Wang, Y., 2016. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany, 122: 10–18.
7- Ferrol, N., Tamayo, E., and Vargas, P. 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany. 67 (22): 6253-6265.
8- Wright, S. F., Franke-Snyder, M., Morton, J. B., and Upadhyaya, A., 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181: 193-203.
9- Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F., and Nichols, K. A., 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130: 317-323.
10- Cornejo, P., Meier, S., Borie, G., Rillig, M. C., and Borie, F., 2008. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment, 406: 154-160.
11- Vodnik, D., Grčman, H., Maček, I., van Elteren, J. T., and Kovačevič, M., 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Science of the Total Environment, 392: 130-136, 2008.
12- Rosier, C. L., Hoye, A. T., and Rillig, M. C., 2006. Glomalin-related soil protein: Assessment of current detection and qualification tools. Soil Biology and Biochemistry, 38: 2205-2211.
13- Nichols, K.A., and Wright, S.F. 2005. Comparison of glomalin and humic acid in eight native United State soils. Soil Science. 170 (12): 985-997.
14- Gadkar, V., and Rillig, M. C., 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiology Letters, 263: 93-101.
15- Malekzadeh, E., Aliasgharzad, N., Majidi, J., Abdolalizadeh, J., Aghebati-Maleki, L., 2016 a. Contribution of glomalin to Pb sequestration by arbuscular mycorrhizal fungus in a sand culture system with clover plant. European Journal of Soil Biology, 74: 45-51.
16- Malekzadeh, E., Aliasgharzad, N., Majidi, J., Aghebati-Maleki, L., Abdolalizadeh, J., 2016 b. Cd-induced production of glomalin by arbuscular mycorrhizal fungus (Rhizophagus irregularis) as estimated by monoclonal antibody assay. Environmental Science and Pollution Research, 23: 20711-20718.
17- Rillig, M. C., and Steinberg, P. D., 2002. Glomalin production by an arbuscular mycorrhizal fungus, a mechanism of habitat modification? Soil Biology and Biochemistry, 34 (9): 1371-1374.
18- Vaidya, G. S., Rillig, M. C., and Wallander, H., 2011. The role of glomalin in soil erosion. Scientific World, 9(9): 82-85.
19- Ferreira, A. S., Totola, M. R., Kasuya, M. C. M., Araujo, E. F., and Borges, A.C., 2005. Small heat shock proteins in the development of thermotolerance in Pisolithu Journal of Thermal Biology, 30 (8): 595–602.
20- Purin, S., and Rillig, M. C., 2008. Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biology and Biochemistry, 40 (4): 1000-1003.
21- Gil-Cardeza, M. L., Ferri, A., Cornejo, P., and Gomez, E., 2014. Distribution of chromium species in a Cr-polluted soil: presence of Cr(III) in glomalin related protein fraction. Science of the Total Environment, 493: 828–833.
22- González-Guerrero, M., Melville, L. H., Ferrol, N., Lott, J .N. A., Azcón-Aguilar, C., and Peterson, R. L., 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology, 54 (2): 103–10.
23- Nayuki, K., Chen, B., Ohtomo, R., and Kuga, , 2014. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments, 29: 60–66.