بررسی تخریب فتوکاتالیتیکی نفتالین توسط نانوکاتالیست های دی اکسید تیتانیوم داپ شده با N-S وP تحت نور مرئی
الموضوعات :
بهمن بنائی
1
,
فرهنگ تیرگیر
2
,
امیرحسام حسنی
3
,
عبدالمجید فدایی
4
,
سید مهدی برقعی
5
1 - دکترای تخصصی مهندسی محیط زیست،دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، ایران.
2 - دانشیار گروه شیمی، دانشکده علوم پایه، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران. *(مسوول مکاتبات)
3 - استاد گروه مهندسی محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران، ایران.
4 - استاد گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی شهرکرد، ایران.
5 - استاد گروه شیمی و محیط زیست، دانشکده شیمی و صنعت نفت دانشگاه صنعتی شریف، ایران.
الکلمات المفتاحية: فتوکاتالیست, فسفر, دی اکسید تیتانیوم, حذف نفتالین, تخریب فتوکاتالیستی,
ملخص المقالة :
زمینه و هدف: نفتالین یکی از هیدروکربنهای آروماتیک چند حلقهای سمی و خطرناک برای انسان و محیط زیست می باشد و حذف آن از محیط زیست ضروری است. هدف از این تحقیق بررسی تخریب فتوکاتالیتیکی نفتالین از محیطهای آبی با استفاده از نانوکاتالیستهای TiO2-P/SPA و TiO2-N,S/SiO2تحت نور مرئی در حضور اکسیژن است. روش بررسی: این تحقیق در سال 1399 انجام گرفت. دو فتوکاتالیست TiO2-P/SPA و TiO2-N,S/SiO2به روش سل-ژل سنتز و از آنها برای حذف نفتالین از محیط آبی تحت نور مرئی در حضور اکسیژن، استفاده شد. اثر پارامترهای مختلف از جمله غلظت اولیه نفتالین،pH، مدت زمان تماس بررسی شدند و ساختار این نانو ذرات با استفاده از تصویر EDAX,SEM و آنالیز DRS بررسی گردید. یافته ها: تصاویر میکروسکوپ الکترونی اندازه ذرات فتوکاتالیست های سنتزی را 10 تا20 نانومتر نشان داد و ضخامت لایه نازک فتوکاتالیست TiO2-N,S/SiO2 و TiO2-P/SPA روی میکروگلولهها به ترتیب برابر 68/698 نانومتر و 73/1 میکرومتر بود. آنالیزDRS نشان داد شکاف انرژی هر دو فتوکاتالیست باریک تر از TiO2 شده و فعالیت فتوکاتالیستی آنها به ناحیه نور مرئی انتقال یافته است. در شرایط بهینه حذف نفتالین مقادیر pH، زمان, غلظت نفتالین، و راندمان حذف به ترتیب برای فتوکاتالیست TiO2-N-S ، معادل 5، 50، 25، 23/94 و برای TiO2-P برابر 5، 40، 25، 39/97 به دست آمد (Pv<0.05). بحث و نتیجه گیری: این فتوکاتالیست ها می توانند به عنوان یک روش نوین، موثر و کاربردی در تصفیه آب و پسابهای صنایع حاوی نفتالین، تحت نور خورشید و نور مریی استفاده شوند.
- Brauman, K., Richter, B.D., Postel, S., Malsy, M.F. (2016). Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Journal of elementa: Science of the Anthropocene. 1-12.
- Drwal, E., Rak, A., Gregorazczuk, E.L. (2019). Review: polycyclic aromatic hydrocarbons (PAHs) Action on placental function and health risk in future life of newborns, journal of Toxicology. 411, 133-142.
- Adeniji, A., Okoh, O., Okoh, A. (2019). levels of polycyclic aromatic hydrocarbons in the water and sediment of buffalo River Estuary, South Africa and their health risk assessment., journal of Archives of Environmental Contamination and Toxicology., 76 , 657-669.
- So, H.L., Chu, W., Wang, Y.H. (2019). Naphthalene degradation by Fe2þ/Oxone/UV Applying an unconventional kinetics model and studying the reaction mechanism, journal of Chemosphere., 218 , 110-118.
- Fazlollahi, S., Hassani, A.H., Borghei, M., Pourzamani, H., (2017). Efficiency of Multi-Walled Carbon Nanotubes in TPH Adsorption in Aqueous Solution (Case study: Naphthalene), Journal of Environmental Sciences and Technology., 19(3), 129-141.
- Jafari, A., Sadeghi, M., Tirgir, F., Borghaei, S.M., (2020). Sulfur and nitrogen doped-titanium dioxide coated on glass microspheres as a high performance catalyst for removal of naphthalene (C10H8) from aqueous environments using photo oxidation in the presence of visible and sunlight, Journal of Desalin and Water Treatment., 192, 195–212.
- Nesterenko-Malkovskaya, v., Kirzhner, F., Zimmels, Y., Armon, R., (2012). Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria, Journal of Chemosphere., 87 (10) ,1186-1191.
- Kumaravel, V., Mathew, S., Bartlet, J., Pillai, S.C., (2019). photocatalytic hydrogen production using metal doped TiO2 : A review of recent advaces, Journal of Appl Catal B., 244, 1021-1064.
- Huang, C.W., Nguyen, B.S., Wu, J.C.S., Nguyen, V.H. (2020). A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water, Journal of International Journal of Hydrogen Energy., 45(36), 18144-18159.
- Nosaka, Y., Nosaka, A.Y. (2017). Generation and detection of reactive oxygen species in photocatalysis, Journal of Chemical Reviews., 117, 11302–11336.
- Kampouri, S., Stylianou, K.C. (2019). Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances, Journal of ACS Catal., 9, 4247-4270.
- Jeon, T.H., Koo, M.S., Kim, H., Choi, W. (2018). Dual-Functional Photolysis and photoelectrocatalytic systems for energy and resource-recovering water treatment, Journal of ACS Catal., 8(12), 11542-11563.
- Murgolo, S., Petronella, F., Ciannarella, R.,and et.al. (2014). UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes, Journal of Catalysis Today., 240 A, 114-124.
- Asapu, R., Manohar, P. V., Wang. B., Guo, Z., Sadu, R., Chen, D. H. (2011). Phosphorous- doped titania nanotubes with enhanced photocatalytic activity. Journal of photochemistry and photobiology A: chemistry., 225, 81-87.
- Ansari, S. A., and Cho, M. H. (2016). Highly visible light responsive, narrow band gap Tio2 nanoparticles modified by elemental red Phosphorus for photocatalysis and photoelectrochemical applications. Journal of Scientific Reports. 6, 25405.
- Mahmoodi, F., Jalilzadeh, R., Tirgir, f., sadeghi, M. (2022). Removal of 1-Naphthol from water via photocatalytic degradation over N,S-Tio2/Silica sulfuric acid under visible light. Journal of advances in Environmental health research. 1 (1), 59-72.
- Banaei, B., Hassani, A.H., Tirgir, F., Fadaei, A.M., Borghaei, S.M. (2021). Removal of Naphthalene from aqueous solutions by Phosphorus doped -titanium dioxide coated on silica phosphoric acid under visible light, Journal of Desalin and Water Treatment., 224, 187-196.
- Baeissa S.H., (2015). Synthesis and characterization of sulfur-titanium dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation, Chinese Journal of Catalysis., 36, 698-704.
- Lin, L., Lin, W., Zhu, Y., Zhao, B., Xie, Y., (2005). Phosphor-doped Titania a Novel Photocatalyst Active in Visible Light, Journal of Chemistry Letters., 34(3), 284-285.
- Yu, L., Yang, X., He, J., He, Y., Wang, D. (2015). Synthesis of magnetically separable N, La-doped TiO2 with enhanced photocatalytic activity, Journal of Separation and Purification Technology., 144, 107-113.
- Yang, J., Bai, H., Jiang,Q., Lian, J., (2008) Visible light photocatalysis in nitrogen-carbon-doped TiO2 films obtained by heating TiO2 gel-film in an ionized N2 gas, Journal of Thin solid films., 516(81736-1742.
- Rahimi, B., and Ebrahimi, A. (2019) Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: optimization by response surface methodology (RSM). Journal of the Taiwan institute of chemical engineers. 101, 64-79.
- Li, L., Lai, C., Huang, F., and et.al, (2019). Degradation of naphtalene with magnetic bio-char activate hydrogen peroxid: synergism of bio-char Fe-Mn binary oxides, Journal of Water Research., 160, 238-248.
_||_
- Brauman, K., Richter, B.D., Postel, S., Malsy, M.F. (2016). Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Journal of elementa: Science of the Anthropocene. 1-12.
- Drwal, E., Rak, A., Gregorazczuk, E.L. (2019). Review: polycyclic aromatic hydrocarbons (PAHs) Action on placental function and health risk in future life of newborns, journal of Toxicology. 411, 133-142.
- Adeniji, A., Okoh, O., Okoh, A. (2019). levels of polycyclic aromatic hydrocarbons in the water and sediment of buffalo River Estuary, South Africa and their health risk assessment., journal of Archives of Environmental Contamination and Toxicology., 76 , 657-669.
- So, H.L., Chu, W., Wang, Y.H. (2019). Naphthalene degradation by Fe2þ/Oxone/UV Applying an unconventional kinetics model and studying the reaction mechanism, journal of Chemosphere., 218 , 110-118.
- Fazlollahi, S., Hassani, A.H., Borghei, M., Pourzamani, H., (2017). Efficiency of Multi-Walled Carbon Nanotubes in TPH Adsorption in Aqueous Solution (Case study: Naphthalene), Journal of Environmental Sciences and Technology., 19(3), 129-141.
- Jafari, A., Sadeghi, M., Tirgir, F., Borghaei, S.M., (2020). Sulfur and nitrogen doped-titanium dioxide coated on glass microspheres as a high performance catalyst for removal of naphthalene (C10H8) from aqueous environments using photo oxidation in the presence of visible and sunlight, Journal of Desalin and Water Treatment., 192, 195–212.
- Nesterenko-Malkovskaya, v., Kirzhner, F., Zimmels, Y., Armon, R., (2012). Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria, Journal of Chemosphere., 87 (10) ,1186-1191.
- Kumaravel, V., Mathew, S., Bartlet, J., Pillai, S.C., (2019). photocatalytic hydrogen production using metal doped TiO2 : A review of recent advaces, Journal of Appl Catal B., 244, 1021-1064.
- Huang, C.W., Nguyen, B.S., Wu, J.C.S., Nguyen, V.H. (2020). A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water, Journal of International Journal of Hydrogen Energy., 45(36), 18144-18159.
- Nosaka, Y., Nosaka, A.Y. (2017). Generation and detection of reactive oxygen species in photocatalysis, Journal of Chemical Reviews., 117, 11302–11336.
- Kampouri, S., Stylianou, K.C. (2019). Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances, Journal of ACS Catal., 9, 4247-4270.
- Jeon, T.H., Koo, M.S., Kim, H., Choi, W. (2018). Dual-Functional Photolysis and photoelectrocatalytic systems for energy and resource-recovering water treatment, Journal of ACS Catal., 8(12), 11542-11563.
- Murgolo, S., Petronella, F., Ciannarella, R.,and et.al. (2014). UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes, Journal of Catalysis Today., 240 A, 114-124.
- Asapu, R., Manohar, P. V., Wang. B., Guo, Z., Sadu, R., Chen, D. H. (2011). Phosphorous- doped titania nanotubes with enhanced photocatalytic activity. Journal of photochemistry and photobiology A: chemistry., 225, 81-87.
- Ansari, S. A., and Cho, M. H. (2016). Highly visible light responsive, narrow band gap Tio2 nanoparticles modified by elemental red Phosphorus for photocatalysis and photoelectrochemical applications. Journal of Scientific Reports. 6, 25405.
- Mahmoodi, F., Jalilzadeh, R., Tirgir, f., sadeghi, M. (2022). Removal of 1-Naphthol from water via photocatalytic degradation over N,S-Tio2/Silica sulfuric acid under visible light. Journal of advances in Environmental health research. 1 (1), 59-72.
- Banaei, B., Hassani, A.H., Tirgir, F., Fadaei, A.M., Borghaei, S.M. (2021). Removal of Naphthalene from aqueous solutions by Phosphorus doped -titanium dioxide coated on silica phosphoric acid under visible light, Journal of Desalin and Water Treatment., 224, 187-196.
- Baeissa S.H., (2015). Synthesis and characterization of sulfur-titanium dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation, Chinese Journal of Catalysis., 36, 698-704.
- Lin, L., Lin, W., Zhu, Y., Zhao, B., Xie, Y., (2005). Phosphor-doped Titania a Novel Photocatalyst Active in Visible Light, Journal of Chemistry Letters., 34(3), 284-285.
- Yu, L., Yang, X., He, J., He, Y., Wang, D. (2015). Synthesis of magnetically separable N, La-doped TiO2 with enhanced photocatalytic activity, Journal of Separation and Purification Technology., 144, 107-113.
- Yang, J., Bai, H., Jiang,Q., Lian, J., (2008) Visible light photocatalysis in nitrogen-carbon-doped TiO2 films obtained by heating TiO2 gel-film in an ionized N2 gas, Journal of Thin solid films., 516(81736-1742.
- Rahimi, B., and Ebrahimi, A. (2019) Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: optimization by response surface methodology (RSM). Journal of the Taiwan institute of chemical engineers. 101, 64-79.
- Li, L., Lai, C., Huang, F., and et.al, (2019). Degradation of naphtalene with magnetic bio-char activate hydrogen peroxid: synergism of bio-char Fe-Mn binary oxides, Journal of Water Research., 160, 238-248.