بهینهسازی ساختمان مجهز به نمای دو پوسته، ماده تغییر فازدهنده، سقف سبز، و فتوولتاییک و بررسی اثرات محیط زیستی و اقتصادی آن
الموضوعات :سبحان ایزدپناه 1 , فریور فاضلپور 2 , محمد افتخاری یزذی 3
1 - گروه مکانیک، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه مهندسی سیستم انرژی، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران. *(مسوول مکاتبات)
3 - گروه مکانیک، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.
الکلمات المفتاحية: بهینه سازی مصرف انرژی, سقف سبز, ماده تغییر فازدهنده, نمای دو پوسته, فتوولتاییک.,
ملخص المقالة :
زمینه و هدف: با عنایت به اهمیت و ضرورت کاهش مصرف انرژی در کشور، روشهای متفاوتی به منظور نیل به این هدف در ساختمان معرفی و مورد بررسی محققان قرار گرفته است، استفاده توامان از پنلهای فتوولتاییک، سقف سبز و مواد تغییر فازدهنده و نمای دو پوسته، منجر به کاهش تقریباً70% مصرف انرژی میشود، با توجه به این نکته در این تحقیق هدف بهینهسازی حالات استفاده از فناوریهای بالا با درنظر گرفتن جنبههای اقتصادی و محیط زیستی میباشد.
روش بررسی: در این تحقیق بهینهسازی نوع و نحوهی بهکارگیری مواد تغییر فازدهنده در دیوار خارجی و بام سبز، با هدف کاهش توامان بار سرمایشی و گرمایشی برای نخستین مرتبه در ساختمان مجهز به فناوریهای یاد شده انجام پذیرفته، از الگوریتم ژنتیک در سه شرایط آب هوایی گرم و خشک استپی در عرض جغرافیایی میانی،گرم و خشک کویری و آب و هوای معتدل و مرطوب، استفاده شده است. روش انجام این تحقیق، بهینهسازی با کمک نرمافزار دیزاین بیلدر است که در سال 1402 انجام و نهایی شده است و نتایج از منظر محیط زیستی و اقتصادی بررسی شدند.
یافتهها: در نتیجهی این اقدام به ترتیب 9، 9 و 6 پاسخ بهینه برای شهرهای تهران با آب و هوای گرم و خشک استپی ، یزد با آب و هوای کویری و آمل با آب و هوای معتدل و مرطوب حاصل شده که بیشترین میزان صرفهجویی انرژی 9/70% برای آب و هوای معتدل مرطوب بوده است.
بحث و نتیجهگیری: با در نظر گرفتن آنالیز اقتصادی و اثرات محیط زیستی دو حالت بهینه نسبت به سایر گزینهها ارجحیت داشته که عبارتند از: 1- استفاده از ماده تغییر فازدهنده، RT31 در بین لایههای آهک و آجر در دیوار خارجی ساختمان مسکونی واقع در شرایط آب و هوایی گرم و خشک استپی در عرض جغرافیایی میانی 2- استفاده از ماده تغییر فازدهنده، RT26 در بین لایههای آهک و آجر در دیوار خارجی ساختمان مسکونی واقع در شرایط آب و هوایی گرم و خشک کویری
1. Frédéric Kuznik JV. Experimental assessment of a phase change material for wall building use. Applied Energy. 2009;86:2038-46.
2. Yilin Li JD, Georgios Kokogiannakis. Heat transfer analysis of an integrated double skin façade and phase change material blind system. Building and Environment. 2017.
3. Alvaro de Gracia LN, Albert Castell, Álvaro Ruiz-Pardob, Servando Alvárez,, Cabeza LF. Experimental study of a ventilated facade with PCM during winter period. energy and buildings. 2013;58:324-32.
4. Alvaro de Graciaa LN, Albert Castell, Álvaro Ruiz-Pardob,, Servando Álvarez LFC. Thermal analysis of a ventilated facade with PCM for cooling applications. energy and buildings. 2013;65:508-15.
5. Alvaro de Gracia LN, Albert Castell, Dieter Boer, Luisa F. Cabeza. Life cycle assessment of a ventilated facade with PCM in its air chamber. Solar Energy. 2014;104:115-23.
6. Liene Kancane RV, Andra Blumberga. Modeling of building envelope’s thermal properties by applying phase change materials. energy Procedia. 2016;95:175-80.
7. Kun Du JC, Zhonghua Wang, Yupeng Wu, Hao Liu. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied Energy. 2018;220:242-73.
8. Saman Nimali Gunasekara RP, Justin Ningwei Chiu, Viktoria Martin. Polyols as phase change materials for surplus thermal energy storage. Applied Energy. 2015.
9. Guohui Feng KH, Hailun Xie, Huixing Li, Xin Liu, Shibo Liu, Chihong Cao. DSC test error of phase change material (PCM) and its influence on the simulation of the PCM floor. Renewable Energy. 2015:1-6.
10. Xiangfei Kong PJ, Chengqiang Yao, Yun Liu. Experimental study on thermal performance of phase change material passive and active combined using for building application in winter. Applied Energy. 2017;206:293-302.
11. Heqing Tian LD, Xiaolan Wei, Suyan Deng, Weilong Wang, Jing Ding. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage. Applied Energy. 2017;204:525-30.
12. Zongtao Li YW, Baoshan Zhuang, Xuezhi Zhao, Yong Tang, Xinrui Ding,, Chen K. Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity. Applied Energy. 2017.
13. Haiyue Yang YW, Qianqian Yu, Guoliang Cao, Rue Yang, Jiaona Ke, Xin Di, Feng Liu, Wenbo Zhang, Chengyu Wang. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Applied Energy. 2018;212:455-64.
14. Guanghui Leng GQ, Zhu Jiang, Guizhi Xu, Yue Qin, Chun Chang, Yulong Ding. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage. Applied Energy. 2018;217:212-20.
15. Anna Laura Pisello VLC, Franco Cotana. Dynamic thermal-energy performance analysis of a prototype building with integrated phase change materials. Energy Procedia. 2015;81:82-8.
16. Stfephane Guichard FM, Dimitri Bigot, Bruno Malet-Damour, Karim Beddiar, Harry Boyer. A complex roof incorporating phase change material for improving thermal comfort in a dedicated test cell. Renewable Energy. 2017;101:450-61.
17. Pere Llorach-Massana JP, Joan Rieradevall, J. Ignacio Montero. Analysis of the technical, environmental and economic potential of phase change materials (PCM) for root zone heating in Mediterranean greenhouses. Renewable Energy. 2017;103:570-81.
18. Kecheng Zhong SL, Gaofeng Sun, Shanshan Li, Xiaosong Zhang. Simulation study on dynamic heat transfer performance of PCM-filledglass window with different thermophysical parameters of phasechange material. energy and buildings. 2015;106:87-95.
19. Shuhong Li GS, Kaikai Zou, Xiaosong Zhang. Experimental research on the dynamic thermal performance of anovel triple-pane building window filled with PCM. Sustainable Cities and Society. 2016;27:15-22.
20. Changyu Liu YW, Yongjian Zhu, Dong Li, Lingyong Ma. Experimental investigation of optical and thermal performance of aPCM-glazed unit for building applications. energy and buildings. 2018;158:794-800.
21. sayanthan Ramakrishnan XW, Jay Sanjayan, John Wilson. Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. Applied Energy. 2017.
22. Antonella D'Alessandro ALP, Claudia Fabiani, Filippo Ubertini, Luisa F. Cabeza, Franco Cotana. Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Applied Energy. 2018;212:1448-61.
23. Amine Laaouatni NM, Rachid Bennacer, Mohamed El Omari, Mohammed El Ganaoui. Phase change materials for improving the building thermal inertia. Energy Procedia. 2017;139:744-9.
24. Sayanthan Ramakrishnan XW, Jay Sanjayan, John Wilson. Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach. Applied Energy. 2017.
25. Hagar Elarga FG, Angelo Zarrella, Andrea Dal Monte, Ernesto Benini. Thermal and electrical performance of an integrated PV-PCM system in double skin façades: A numerical study. Solar Energy. 2016;136:112-24.
26. Mohamad Ahangari MM. An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. sustainable Cities and Society. 2018.
27. Mingfang Tang XZ. Experimental study of the thermal performance of an extensive green roof on sunny summer days. Applied Energy. 2019;242:1010-21.
28. Wan Iman Wan Mohd Nazi YW, Haisheng Chen, Xinjing Zhang, Anthony Paul Roskilly. Passive Cooling Using Phase Change Material and Insulation for High rise Office Building Tropical Climate. Energy Procedia. 2017;142:2295-302.
29. Stefano Cascone FC, Antonio Gagliano, Gaetano Sciuto. A comprehensive study on green roof performance for retrofitting existing buildings. Building and Environment. 2018;136:227-39.
30. Caterina Gargari CB, Fabio Fantozzi, Carlo Alberto Campiotti. Simulation of the thermal behaviour of a building retrofitted with a green roof: optimization of energy efficiency with reference to italian climatic zones. Agriculture and Agricultural Sceince Procedia. 2016;8:628-36.
31. Qingwei Xing XH, Yaolin Lin , Hang Tan , Ke Yang. Experimental Investigation on the Thermal Performance of a Vertical Greening System with Green Roof in Wet and Cold Climates during Winter. energy and buildings. 2019;183:105-17.
32. 32. Jutta Schade SL, Joel Lönnqvis. The thermal performance of a green roof on a highly insulated building in a sub-arctic climate. Energy and buildings. 2021;241:110961.
33. Yongqiang Luo LZ, Xiliang Wang, Lei Xie, Zhongbing Liu, Jing Wu, Yelin Zhang, Xihua He. A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds. Applied Energy. 2017;199:281-93.
34. Chao Chen HL, Zhiqiang (John) Zhai, Yin Li, Fengguang Yang, Fengtao Han, Shen Wei. Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses. Applied Energy. 2018;216:602-12.
35. Siliang Yang AC, Aldo Di Carlo, Deo Prasad, Alistair Sproul, Francesco Fiorito. Performance assessment of BIPV/T double-skin façade for various climate zones in Australia: Effects on energy consumption. Solar Energy. 2020;199:377–99.
36. Muhammad Shafique XL, Jian Zuo. Photovoltaic-green roofs: A review of benefits, limitations, and trends. Solar Energy. 2020;202:485–97.
37. Piero Bevilacqua RB, Natale Arcuri. Green roofs in a Mediterranean climate: Energy performances based on in-situ experimental data. Renewable Energy. 2020;152:1414-30.
38. J. Xamán AR-A, I. Zavala-Guillén, I. Hernández-Pérez, J. Arce, D., Sauceda. Thermal performance analysis of a roof with a PCM-layer under Mexican weather conditions. Renewable Energy. 2020;149:773-85.
39. Ji Hun Park UB, Seong Jin Chang, Seunghwan Wi, Yujin Kang, Sumin Kim. Energy retrofit of PCM-applied apartment buildings considering building orientation and height. Energy. 2021;222:119877.
40. Liu Y, Ming H, Luo X, Hu L, Sun Y. Timetabling optimization of classrooms and self-study rooms in university teaching buildings based on the building controls virtual test bed platform considering energy efficiency. Building Simulation. 2023;16(2):263-77.
41. Krarti M, Aldubyan M. Peak demand-based optimization approach for building retrofits: case study of Saudi residential buildings. Energy Efficiency. 2022;15(8):69.
42. Kümpel A, Stoffel P, Müller D. Development of a Long-Term Operational Optimization Model for a Building Energy System Supplied by a Geothermal Field. Journal of Thermal Science. 2022;31(5):1293-301.
43. Xue Q, Wang Z, Chen Q. Multi-objective optimization of building design for life cycle cost and CO2 emissions: A case study of a low-energy residential building in a severe cold climate. Building Simulation. 2022;15(1):83-98.
44. Ronghui S, Liangrong N. An intelligent fuzzy-based hybrid metaheuristic algorithm for analysis the strength, energy and cost optimization of building material in construction management. Engineering with Computers. 2022;38(4):2663-80.
45. Abbasizade F, Abbaspour M. Developing an optimization-based simulation approach for building energy performance evaluation (case study: Iran). International Journal of Energy and Water Resources. 2021;5(3):277-86.
46. Li X, Rodriguez D. Optimization of a building energy performance by a multi-objective optimization, using sustainable energy combinations. Evolving Systems. 2021;12(4):949-63.
47. Ma L, Ge H, Wang L, Wang L. Optimization of passive solar design and integration of building integrated photovoltaic/thermal (BIPV/T) system in northern housing. Building Simulation. 2021;14(5):1467-86.
48. Lin Y, Yang W. An ANN-exhaustive-listing method for optimization of multiple building shapes and envelope properties with maximum thermal performance. Frontiers in Energy. 2021;15(2):550-6.
49. Tian S, Su X, Shao X, Wang L. Optimization and evaluation of a solar energy, heat pump and desiccant wheel hybrid system in a nearly zero energy building. Building Simulation. 2020;13(6):1291-303.
50. Zhao J, Du Y. Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Solar Energy. 2020;206:997-1017.
51. Ameur M, Kharbouch Y, Mimet A. Optimization of passive design features for a naturally ventilated residential building according to the bioclimatic architecture concept and considering the northern Morocco climate. Building Simulation. 2020;13(3):677-89.
52. Zhang T, Wang D, Liu H, Liu Y, Wu H. Numerical investigation on building envelope optimization for low-energy buildings in low latitudes of China. Building Simulation. 2020;13(2):257-69.
53. Mahdavi Adeli M, Farahat S, Sarhaddi F. Increasing thermal comfort of a net-zero energy building inhabitant by optimization of energy consumption. International Journal of Environmental Science and Technology. 2020;17(5):2819-34.
54. Ciardiello A, Rosso F, Dell'Olmo J, Ciancio V, Ferrero M, Salata F. Multi-objective approach to the optimization of shape and envelope in building energy design. Applied Energy. 2020;280:115984.
55. Zhang J, Liu N, Wang S. A parametric approach for performance optimization of residential building design in Beijing. Building Simulation. 2020;13(2):223-35.
56. Izadpanah S, Fazelpour F, Eftekhari Yazdi M. Comparative study of simultaneous use of a double or a triple skin facade with phase change materials, green roof, and photovoltaics in residential buildings of Iran. Environmental Progress & Sustainable Energy. 2023;42(1):e13935.
57. Ivan Andric AK, Sami G. Al-Ghamdi Efficiency of green roofs and green walls as climate change mitigation measures in extremely hot and dry climate: Case study of Qatar. Energy Reports. 2020;6:2476–89.
58. Morshed Alam HJ, Jay Sanjayan, John Wilson. Energy saving potential of phase change materials in major Australian cities. Energy and Buildings. 2014;78:192–201.
59. Niloufar Ziasistani FF. Comparative study of DSF, PV-DSF and PV-DSF/PCM building energy performance considering multiple parameters. Solar Energy. 2019;187:115-28.
60. Mukhamet T, Kobeyev S, Nadeem A, Memon SA. Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations. Energy. 2021;215:119102.
61. Mi X, Liu R, Cui H, Memon SA, Xing F, Lo Y. Energy and economic analysis of building integrated with PCM in different cities of China. Applied Energy. 2016;175:324-36.
62. Movahed Y, Bakhtiari A, Eslami S, Noorollahi Y. Investigation of single-storey residential green roof contribution to buildings energy demand reduction in different climate zones of Iran. International Journal of Green Energy. 2021;18(1):100-10.
63. Heydari AH, Haghighi Khoshkhoo R. Techno-economical analysis of DSF, BIPV and PCM in administrative buildings in four climates of Iran. International Journal of Ambient Energy. 2022;43(1):8474-85.
64. Gholami H, Nils Røstvik H, Manoj Kumar N, Chopra SS. Lifecycle cost analysis (LCCA) of tailor-made building integrated photovoltaics (BIPV) façade: Solsmaragden case study in Norway. Solar Energy. 2020;211:488-502.
65. Passera A, Lollini R, Avesani S, Lovati M, Maturi L, Moser D. BIPV Facades: Market potential of retroft application in the european building stock 2018.