امکان سنجی تصفیه پساب کارخانه قارچ با استفاده از روش انعقاد شیمیایی و الکتریکی
الموضوعات :ابوالفضل رعنائی لسان 1 , حسین زارع ولوکلائی 2
1 - گروه مهندسی شیمی، مواد و پلیمر، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، قزوین، ایران.
2 - استادیار گروه مهندسی شیمی، مواد و پلیمر، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، قزوین، ایران. *(مسوول مکاتبات)
الکلمات المفتاحية: انعقاد الکتریکی, پساب, انعقاد شیمیایی, قارچ, تصفیه,
ملخص المقالة :
زمینه و هدف: با توجه به قوانین سختگیرانه زیست محیطی و مشکل کمبود آب در سال های اخیر تصفیه پساب خروجی از صنایع جهت استفاده مجدد ضروری است. پساب صنعت قارچ به دلیل اسفاده از انواع کودها و سموم، مواد ضدعفونی کننده و شوینده ها حاوی آلاینده های آلی و معدنی مختلفی است که پارامترهای آلایندگی از قبیل دترجنت، کدورت، BOD و CODدر آن بالاتر از حد مجاز استاندارد می باشد. در این تحقیق تصفیه پساب کارخانه قارچ جهت استفاده مجدد در بخش پرورش و کمپوست سازی بررسی شده است.روش بررسی: در این پژوهش که در آزمایشگاه شرکت کشت و صنعت ملارد (سال 1399) انجام شد جهت تصفیه پساب و حذف پارامترهای BOD، COD، کدورت و دترجنت روش های انعقاد الکتریکی و شیمیایی مورد استفاده قرار گرفت. روش انعقاد الکتریکی در اختلاف پتانسیل 10، 20 و 30 ولت و زمان های 15، 30، 45، 60 و 75 دقیقه توسط الکترودهای آهن و آلومینیوم انجام شد. در روش انعقاد شیمیایی تاثیر دو منعقده کننده پلی آلومینیوم کلراید و سولفات آلومینیوم در حضور کمک منعقده کننده پلی الکترولیت آنیونی بر روی تصفیه پساب بررسی شد.یافتهها: در روش انعقاد الکتریکی در اختلاف پتانسیل 30 ولت به مدت 60 دقیقه، راندمان حذف COD و BOD به ترتیب 1/59 و 46 درصد حاصل شد. در روش انعقاد شیمیایی با میزان دوز منعقد کننده 75 میلی گرم در هر لیتر از پساب و pH 6 بیشترین راندمان حذف برای COD، BOD، کدورت و دترجنت به ترتیب 6/61، 6/47، 1/82 و 5/75 درصد به دست آمد.بحث و نتیجهگیری: نتایج نشان داد راندمان حذف پارامترهای BOD، COD، دترجنت و کدورت توسط انعقاد شیمیایی کمی بالاتر از انعقاد الکتریکی است. همچنین در روش انعقاد شیمیایی منعقد کننده پلی آلومینیوم کلراید هم از سولفات آلومینیوم و هم از ترکیب هر دو منعقد کننده عملکرد بهتری دارد.
- Bijari, M., Alimohammadi, Z., Younesi, H., Bahramifar, N., 2021, Investigation on the efficiency of activated carbon produced from grapes wood for the removal of reactive blue 19 and reactive red 198 dyes from aqueous solution- equilibrium and kinetic studies. Journal of Environmental Science and Technology, 23(1), pp. 129-143. (In Persian)
- Katal, R., Zare, H., Rastegar, S.O., Mavaddat, P., Darzi, G.N., 2014, Removal of dye and chemical oxygen demand (COD) reduction from textile industrial wastewater using hybrid bioreactors. Environmental Engineering & Management Journal, 13(1), pp. 43-50.
- Monazami Tehrani, G., Borgheipour, H., Nezampour, A., 2020, Reuse of varamin vegetable oils industry wastewater by using IFAS method. Journal of Environmental Science and Technology, 22(3), pp. 119-132. (In Persian)
- Katal, R., Zare, H., Rahmati, H.T., Darzi, G.N., 2012, Biosorption of zinc from aqueous solutions using dried activated sludge. Environmental Engineering and Management Journal, 11(4), pp. 857-865.
- Falkenmark, M., 2013, Growing water scarcity in agriculture: future challenge to global water security. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2002), pp. 1917-1920.
- Miles, P.G., Chang, S.-T., 2004, Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press.
- Atwater, J.W., Whalen, T., Dasika, R., 1998. Mushroom waste management project, liquid waste management. UBC Department of Civil Engineering.
- Ghazouani, M., Akrout, H., Jellali, S., Bousselmi, L., 2019, Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities. Science of the total environment, 647, pp. 1651-1664.
- Teh, C.Y., Budiman, P.M., Shak, K.P.Y., Wu, T.Y., 2016, Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16), pp. 4363-4389.
- Ziaefar, N., Khodaei, S., Talat-Mehrabad, J., Arjomandi Rad, F., 2020, Evaluation of optimization removal of methyl orange from aqueous solutions with Ag, Co/TiO2 nano-particles by experimental design. Journal of Environmental Science and Technology, 22(5), pp. 303-311. (In Persian)
- Taheriyoun, M., Memaripour, A., 2019, Evaluation of coagulation and flocculation process in removal of heavy metals from chemical wastewater of Mobarakeh Steel. Journal of Environmental Science and Technology, 21(6), pp. 46-60. (persian)
- Bahrodin, M.B., Zaidi, N.S., Hussein, N., Sillanpää, M., Prasetyo, D.D., Syafiuddin, A., 2021, Recent advances on coagulation-based treatment of wastewater: Transition from chemical to natural coagulant. Current Pollution Reports, pp. 1-13.
- Zhao, C., Zhou, J., Yan, Y., Yang, L., Xing, G., Li, H., Wu, P., Wang, M., Zheng, H., 2020, Application of coagulation/flocculation in oily wastewater treatment: A review. Science of The Total Environment, pp. 142795.
- Hosseini, H., Azemati, A.-A., Mousavinia, M.R., 2019, Treatement of the wastewater from E-PVC unit in a petrochemical company using electrocoagulation method. Journal of Environmental Science and Technology, 21(1), pp. 57-69. (persian)
- Jiang, J.-Q., 2015, The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 8, pp. 36-44.
- Chezeau, B., Boudriche, L., Vial, C., Boudjemaa, A., 2020, Treatment of dairy wastewater by electrocoagulation process: Advantages of combined iron/aluminum electrodes. Separation Science and Technology, 55(14), pp. 2510-2527.
- Martín-Domínguez, A., Rivera-Huerta, M.d.L., Pérez-Castrejón, S., Garrido-Hoyos, S.E., Villegas-Mendoza, I.E., Gelover-Santiago, S.L., Drogui, P., Buelna, G., 2018, Chromium removal from drinking water by redox-assisted coagulation: Chemical versus electrocoagulation. Separation and Purification Technology, 200, pp. 266-272.
- Chao, H.J., Zhang, X., Wang, W., Li, D., Ren, Y., Kang, J., Liu, D., 2020, Evaluation of carboxymethylpullulan‐AlCl3 as a coagulant for water treatment: A case study with kaolin. Water Environment Research, 92(2), pp. 302-309.
- Zhang, Y., Shen, Y., 2019, Wastewater irrigation: past, present, and future. Wiley Interdisciplinary Reviews: Water, 6(3), pp. 1-6.
- Jaramillo, M.F., Restrepo, I., 2017, Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability, 9(10), pp. 1734.
- Jiménez, B., 2006, Irrigation in developing countries using wastewater. International Review for Environmental Strategies, 6(2), pp. 229-250.
- Kashani, S.A., Ali, I., Hasni, M.S., Asrar, M., Ahmad, J., Shahzad, M.Z., The price to pay for treated wastewater: an evaluation of water pricing scenarios in the Jordan Valley. Environmental Sciences and Ecology: Current Research, 2(1), pp. 1-4.
- Lin, S., Chan, H., Leu, H., 2000, Treatment of wastewater effluent from an industrial park for agricultural irrigation. Desalination, 128(3), pp. 257-267.
- Teh, C.Y., Wu, T.Y., Juan, J.C., 2014, Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant. Industrial Crops and Products, 56, pp. 17-26.
- Mateus, A., Torres, J., Marimon-Bolivar, W., Pulgarin, L., 2021, Implementation of magnetic bentonite in food industry wastewater treatment for reuse in agricultural irrigation. Water Resources and Industry, pp. 100154.
- Baird, R.B., Eaton, A.D., Rice, E.W., Bridgewater, L., 2017. Standard methods for the examination of water and wastewater. 23rd ed. American Public Health Association Washington, DC.
- Hashemzadeh, F., Borghei, S.M., 2021, Study on application of electrocoagulation process to remove heavy metals lead, cadmium and chromium from water. Journal of Environmental Science and Technology, 23(4), pp. 213-224. (In Persian)
- Bolto, B., Gregory, J., 2007, Organic polyelectrolytes in water treatment. Water research, 41(11), pp. 2301-2324.
- Chalkesh Amiri, M., 1397. Principle of Water Treatment. 2nd ed. Arkan Danesh. (In Persian)
- Ritigala, T., Demissie, H., Chen, Y., Zheng, J., Zheng, L., Zhu, J., Fan, H., Li, J., Wang, D., Weragoda, S.K., 2021, Optimized pre-treatment of high strength food waste digestate by high content aluminum-nanocluster based magnetic coagulation. Journal of Environmental Sciences, 104, pp. 430-443.
- Zareimahmoudabady, T., Talebi, P., Ehrampoush, M.H., Jalili, M., 2019, Optimization of coagulation and flocculation process in wastewater treatment of the food industry: A laboratory study. Journal of Rafsanjan University of Medical Sciences, 18(7), pp. 623-636. (In Persian)
_||_
- Bijari, M., Alimohammadi, Z., Younesi, H., Bahramifar, N., 2021, Investigation on the efficiency of activated carbon produced from grapes wood for the removal of reactive blue 19 and reactive red 198 dyes from aqueous solution- equilibrium and kinetic studies. Journal of Environmental Science and Technology, 23(1), pp. 129-143. (In Persian)
- Katal, R., Zare, H., Rastegar, S.O., Mavaddat, P., Darzi, G.N., 2014, Removal of dye and chemical oxygen demand (COD) reduction from textile industrial wastewater using hybrid bioreactors. Environmental Engineering & Management Journal, 13(1), pp. 43-50.
- Monazami Tehrani, G., Borgheipour, H., Nezampour, A., 2020, Reuse of varamin vegetable oils industry wastewater by using IFAS method. Journal of Environmental Science and Technology, 22(3), pp. 119-132. (In Persian)
- Katal, R., Zare, H., Rahmati, H.T., Darzi, G.N., 2012, Biosorption of zinc from aqueous solutions using dried activated sludge. Environmental Engineering and Management Journal, 11(4), pp. 857-865.
- Falkenmark, M., 2013, Growing water scarcity in agriculture: future challenge to global water security. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2002), pp. 1917-1920.
- Miles, P.G., Chang, S.-T., 2004, Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press.
- Atwater, J.W., Whalen, T., Dasika, R., 1998. Mushroom waste management project, liquid waste management. UBC Department of Civil Engineering.
- Ghazouani, M., Akrout, H., Jellali, S., Bousselmi, L., 2019, Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities. Science of the total environment, 647, pp. 1651-1664.
- Teh, C.Y., Budiman, P.M., Shak, K.P.Y., Wu, T.Y., 2016, Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16), pp. 4363-4389.
- Ziaefar, N., Khodaei, S., Talat-Mehrabad, J., Arjomandi Rad, F., 2020, Evaluation of optimization removal of methyl orange from aqueous solutions with Ag, Co/TiO2 nano-particles by experimental design. Journal of Environmental Science and Technology, 22(5), pp. 303-311. (In Persian)
- Taheriyoun, M., Memaripour, A., 2019, Evaluation of coagulation and flocculation process in removal of heavy metals from chemical wastewater of Mobarakeh Steel. Journal of Environmental Science and Technology, 21(6), pp. 46-60. (persian)
- Bahrodin, M.B., Zaidi, N.S., Hussein, N., Sillanpää, M., Prasetyo, D.D., Syafiuddin, A., 2021, Recent advances on coagulation-based treatment of wastewater: Transition from chemical to natural coagulant. Current Pollution Reports, pp. 1-13.
- Zhao, C., Zhou, J., Yan, Y., Yang, L., Xing, G., Li, H., Wu, P., Wang, M., Zheng, H., 2020, Application of coagulation/flocculation in oily wastewater treatment: A review. Science of The Total Environment, pp. 142795.
- Hosseini, H., Azemati, A.-A., Mousavinia, M.R., 2019, Treatement of the wastewater from E-PVC unit in a petrochemical company using electrocoagulation method. Journal of Environmental Science and Technology, 21(1), pp. 57-69. (persian)
- Jiang, J.-Q., 2015, The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 8, pp. 36-44.
- Chezeau, B., Boudriche, L., Vial, C., Boudjemaa, A., 2020, Treatment of dairy wastewater by electrocoagulation process: Advantages of combined iron/aluminum electrodes. Separation Science and Technology, 55(14), pp. 2510-2527.
- Martín-Domínguez, A., Rivera-Huerta, M.d.L., Pérez-Castrejón, S., Garrido-Hoyos, S.E., Villegas-Mendoza, I.E., Gelover-Santiago, S.L., Drogui, P., Buelna, G., 2018, Chromium removal from drinking water by redox-assisted coagulation: Chemical versus electrocoagulation. Separation and Purification Technology, 200, pp. 266-272.
- Chao, H.J., Zhang, X., Wang, W., Li, D., Ren, Y., Kang, J., Liu, D., 2020, Evaluation of carboxymethylpullulan‐AlCl3 as a coagulant for water treatment: A case study with kaolin. Water Environment Research, 92(2), pp. 302-309.
- Zhang, Y., Shen, Y., 2019, Wastewater irrigation: past, present, and future. Wiley Interdisciplinary Reviews: Water, 6(3), pp. 1-6.
- Jaramillo, M.F., Restrepo, I., 2017, Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability, 9(10), pp. 1734.
- Jiménez, B., 2006, Irrigation in developing countries using wastewater. International Review for Environmental Strategies, 6(2), pp. 229-250.
- Kashani, S.A., Ali, I., Hasni, M.S., Asrar, M., Ahmad, J., Shahzad, M.Z., The price to pay for treated wastewater: an evaluation of water pricing scenarios in the Jordan Valley. Environmental Sciences and Ecology: Current Research, 2(1), pp. 1-4.
- Lin, S., Chan, H., Leu, H., 2000, Treatment of wastewater effluent from an industrial park for agricultural irrigation. Desalination, 128(3), pp. 257-267.
- Teh, C.Y., Wu, T.Y., Juan, J.C., 2014, Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant. Industrial Crops and Products, 56, pp. 17-26.
- Mateus, A., Torres, J., Marimon-Bolivar, W., Pulgarin, L., 2021, Implementation of magnetic bentonite in food industry wastewater treatment for reuse in agricultural irrigation. Water Resources and Industry, pp. 100154.
- Baird, R.B., Eaton, A.D., Rice, E.W., Bridgewater, L., 2017. Standard methods for the examination of water and wastewater. 23rd ed. American Public Health Association Washington, DC.
- Hashemzadeh, F., Borghei, S.M., 2021, Study on application of electrocoagulation process to remove heavy metals lead, cadmium and chromium from water. Journal of Environmental Science and Technology, 23(4), pp. 213-224. (In Persian)
- Bolto, B., Gregory, J., 2007, Organic polyelectrolytes in water treatment. Water research, 41(11), pp. 2301-2324.
- Chalkesh Amiri, M., 1397. Principle of Water Treatment. 2nd ed. Arkan Danesh. (In Persian)
- Ritigala, T., Demissie, H., Chen, Y., Zheng, J., Zheng, L., Zhu, J., Fan, H., Li, J., Wang, D., Weragoda, S.K., 2021, Optimized pre-treatment of high strength food waste digestate by high content aluminum-nanocluster based magnetic coagulation. Journal of Environmental Sciences, 104, pp. 430-443.
- Zareimahmoudabady, T., Talebi, P., Ehrampoush, M.H., Jalili, M., 2019, Optimization of coagulation and flocculation process in wastewater treatment of the food industry: A laboratory study. Journal of Rafsanjan University of Medical Sciences, 18(7), pp. 623-636. (In Persian)