ارزیابی راهکارهای موثر در کاهش جزیره حرارتی مراکز شهری با تاکید بر سطوح سرد و سطوح سبز (نمونه موردی: باز طراحی یک بلوک شهری در منطقه راه آهن شهر تهران)
الموضوعات :گلنوش پارسی 1 , حسین مدی 2 , مریم آزموده 3
1 - كارشناسي ارشد معماري و انرژي. دانشگاه بين المللي امام خميني، قزوين، ايران.
2 - عضو هيئت علمي گروه معماري دانشگاه بين المللي امام خميني، قزوين، ايران.
3 - عضو هيئت علمي گروه معماري دانشگاه بين المللي امام خميني، قزوين، ايران. *(مسوول مکاتبات)
الکلمات المفتاحية: جزیره حرارتی, راهکارهای کاهشی جزیره حرارتی, محله راه آهن تهران, شبیه سازی انویمت.,
ملخص المقالة :
زمینه و هدف: آسایش حرارتی یکی از الزامات شهرها است. با وجود این امروزه بسیاری از شهرها شاهد کاهش آسایش حرارتی هستند که یکی از دلایل آن افزایش جزایر حرارتی بهواسطه افزایش محیط مصنوع است. کلانشهر تهران نیز سالهاست که با جزیره حرارتی روبهرو است. به همین منظور هدف این پژوهش بازطراحی و ارائه الگو برای عناصر مصنوع سیمای کف، جداره و بام در محله راهآهن تهران و یافت ترکیبی موثر از عوامل کاهنده برای کاهش جزیره حرارتی است.
روش بررسی: این پژوهش، با روش تجربی و نمونهکاوی (محله مسکونی راه آهن تهران) در تاریخ بهمن 1399 هجری شمسی انجام شده است. روش گردآوری دادهها، غیرمستقیم و مستقیم و روش تحلیل، شبیه سازی با نرمافزار انویمت است. ابتدا شرایط موجود بر اساس پارامترهایی محیطی تحلیل و پس از آن سناریوهای کاهشی مجددا بر اساس همان پارامترها بررسی و مقایسه شده است.
یافتهها: به طور کلی مصالح معابر تاثیر بسیاری در افزایش دما دارند و تغییر آنها به مصالح بازتابنده سبب کاهش چشمگیر دما میشود. همراهی مصالح بازتابنده معابر با بام بازتابنده و سبز نیز موثر است، اگرچه که استفاده از بام سبز به دلیل کاهش بیشتر دما و افزایش رطوبت تبخیری جایگزین بهتری محسوب میشود. اولویت استفاده از نمای سبز به ترتیب در جهات جنوبی، غربی، شمالی و شرقی است و استفاده از نمای سبز بدون همراهی سایر راهکارها تاثیر کمتری دارد.
بحث و نتیجهگیری : استفاده توامان از مصالح بازتابنده معابر، بام سبز و افزودن نمای سبز میتواند الگو مناسبی برای کاهش اثرات جزایر حرارتی در محدوده مورد نظر و یا هر محله مشابه آن باشد.
1. Heidari, Shahin, Monam, Alireza, Evaluation of thermal comfort indices in outdoor space, Jgrd, 2013, Vol. 11, No. 20, pp. 197-216. (In Persian)
2. Ghiabaklou Zahra. Fundamental of building physics 2: Environmental control. 11.Tehran: Amir Kabir; 2015. (In Persian)
3. Akbari, H., Pomerantz, M., Taha, H., 2001. Cool surface and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, Vol. 70, No. 3, pp. 295-310.
4. Smith, C., Levermore, G.,2008. Designing urban spaces and buildings to improve sustainability and quality of life in warmer world. Energy policy, Vol. 36, pp. 4558-4562.
5. Madi- H., Fazli- M., Role of architecture in causing heat island and increase of energy consumption in Tehran- Proceeding of the first national conference in architecture, restoration, urban planning and natural environment, 2013- Hamedan, Iran. (In Persian)
6. Frumkin, H.,2002. Urban sprawl and public health. Public health reports, Vol. 117, pp. 201-217.
7. Magli, S., Lodi, C., Lombroso, L., 2015. Analysis of the urban heat island effects on building energy consumption. International journal of Energy Environment Engineering, Vol. 6, pp.91-99.
8. Shamsi pour, Aliakbar, Alavipanah, Sadrodin, Ghoreyshi, Salman, The cool effect of city greenery (case study: Munich), Jes, 2016, Vol. 42, No. 2, pp. 441-453. (In Persian)
9. Najafian Gorji, Mohamadreza, Moghimi, Ebrahim, Mohammadi Hossein, Assessment of the temperature fluctuation, heat island pattern and greenery in hot days in Tehran, Jopg, 2018, No.38, pp. 1-18. (In Persian)
10. Aflaki, A., Mirnezhad, M., Ghaffarianhosein, A., Ghaffarianhosseini, A., Omrany, H., Wang, Z., Akbari, H.,2017. Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, Vol 62, pp. 131-145.
11. Gartland, L.2008. Heat Islands Understanding and mitigating heat in urban areas. Cromwell Press.
12. Mojhajerani, A., Bakearic, J., Jeffrey-Bailey, T.,2017. The urban heat island effects, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, Vol.197, pp. 522-538.
13. Sten, G., Vogt, J., Tharang, A., Dettmann, S., Roloff, A.,2015. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landscape and Urban Planning, Vol. 143, pp. 33-42.
14. Synnefa, A., Santamouris, M., Akbari, H.,2007. Estimating the effect of using cool coating on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and Building, Vol. 39, pp. 1167-1174.
15. Alexandri, E., Jones, P., 2008. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, Vol. 43, pp. 480-493.
16. Akbari, H., Menon, S., Rosenfeld, A.,2009. Global cooling: increasing world-wide urban albedos to offset CO2.Climate Change, Vol. 94, pp. 275-286.
17. Wong, N.H., Yong Kwang Tan, A., Chen, Y., Sekar, K., Yok, T.P., Chan, D., Chiang, K., Chun Wong, N.,2010. Thermal evaluation of vertical greenery systems for building walls. Building and Environment, Vol. 45, pp. 663-672.
18. Santamouris, M., Synnefa, A., Karlessi, T., 2011. Using advanced cool materials in the urban built environment to mitigate heat island improve thermal comfort conditions. Solar Energy, Vol.85, pp. 3085-3102.
19. Santamouris, M.,2013. Using cool pavements as a mitigation strategy to fight urban heat island- A review of the actual developments. Renewable and Sustainable Energy Reviews, Vol. 26, pp. 224-240.
20. Rossi, F., Casstellani, B., Presciutti, A., Morini, E., Filiponi, M., Nicolini, A., Santamouris, M.,2015. Retroreflective façade for urban heat island mitigation: Experimental investigation and energy evaluation. Applied Energy, Vol. 145, pp.8-20.
21. Tan, Z., Lau, K., Ng, E.,2016. Urban tree design approaches for mitigating daytime urban heat island effects in a high- density urban environment. Energy and Building, Vol.114, pp. 265-274.
22. Akbai, H., Kolokotas, D.,2016. Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, Vol, 133, pp. 834-842.
23. Takleghani, M., Berardi, U.,2018. The effect of pavement characteristics on pedestrians' thermal comfort in Toronto. Urban Climate, Vol. 24, pp. 449-459.
24. Fabiani, C., Pisello, A., Bou-Zeid, E., Yang, J., Cotana, F., 2019. Adaptive measures for mitigating urban heat isalnds: The potential of thermochromic materials to control roofing energy balance. Applied Energy, Vol. 247, pp. 155-170.
25. Susca, T.,2019. Green roofs to reduce building energy use? A review on key structural factors of green roofs and their effects on urban climate. Building and Environment, Vol. 162.
26. Khosravi, Mahmood, Ghobadi, Asad, Explaining the role of green roof systems in balancing of urban feat island case of study: Karaj, Urban ecology research,2014, Vol. 4, pp. 67-78. (In Persian)
27. Azmoodeh, Maryam, Heidari Shahin, The effect of urban green wall on decreasing microclimate temperature and urban heat island, Jest, 2017, Vol. 19, Special Nom. 5, pp. 597-606. (In Persian)
28. Pourdeihimi, Sahram, Tahsildoost, Mohammad, Ameri Pouria, Effect of vegetation cover on energy consumption optimization due to reduction of urban heat island intensity: Case of Tehran metropolitan area, Quarterly journal of energy policy and planning research, 2019, Vol. 5, No. 3, pp. 97-122. (In Persian)
29. Memon, R.A., Lenug, D., Chunho, L.,2008. A review on the generation, determination and mitigation of urban heat island. Journal of Environmental science, Vol. 20, pp. 120-128.
30. Taha, H.,1997. Urban climate and heat island: albedo, evapotranspiration, and anthropogenic heat. Energy and buildings, Vol. 25, pp.99-103.
31. Gago, E.J., Roldan, J., Pacheco-Torrses, R., Ordonez, J.,2013. The city and urban heat island: A review of strategies to mitigate adverse effects. Renewable and sustainable energy reviews, Vol. 25, pp. 749-758.
32. Berardi, U., GhaffarianHoseini, AH., GhaffarianHoseini, A.,2014. State-of-the-art analysis of the environmental benefits of green roofs. Applied Energy, Vol. 115, pp. 411-428.
33. Perini, k., Magliocco, A.,2014. Effects of vegetation, Uran density, building height, and atmospheric condition on local temperature and thermal comfort. Urban forestry and urban greening, Vol.13, pp. 495-506.