بررسی و مقایسه نانوکامپوزیت اکسید گرافن سنتز شده به روش هم رسوبی با روش حلال-گرمایی از نظر قدرت مغناطیسی و ظرفیت جذب کادمیم از محلول های آبی
الموضوعات :
فاطمه عین الهی پیر
1
,
نادر بهرامی فر
2
,
حبیب اله یونسی
3
1 - دانشگاه زابل، دانشکده منابع طبیعی، عضو هیأت علمی گروه محیط زیست.
2 - دانشگاه تربیت مدرس، دانشکده منابع طبیعی و علوم دریایی، عضو هیأت علمی گروه محیط زیست. * (مسوول مکاتبات)
3 - دانشگاه تربیت مدرس، دانشکده منابع طبیعی و علوم دریایی، عضو هیأت علمی گروه محیط زیست
تاريخ الإرسال : 29 السبت , صفر, 1439
تاريخ التأكيد : 06 الأربعاء , ربيع الأول, 1440
تاريخ الإصدار : 06 الإثنين , جمادى الأولى, 1442
الکلمات المفتاحية:
حلال گرمایی,
همرسوبی,
نانوکامپوزیت اکسیدگرافن مغناطیسی,
جذب سطحی,
ملخص المقالة :
زمینه و هدف: یکی از روش های حذف آلاینده های آبی، استفاده از نانوجاذب ها است. لذا در این بررسی به منظور معرفی نانوجاذب مناسب، خاصیت مغناطیسی نانوکامپوزیت اکسیدگرافن مغناطیسی شده به دو روش همرسوبی و حلال گرمایی و امکان استفاده از آن ها برای حذف کادمیم از محلول های آبی بررسی شد.
روش بررسی: اکسید گرافن سنتز شده به روش هامر، به دو روش حلال گرمایی و همرسوبی مغناطیسی گردید. سپس هر یک از جاذب ها به دو روش رفلاکس (با استفاده از اتیلن دی آمین) و سنتز سرد (با استفاده از دی کلرومتان) آمین دار شدند. حذف یون های کادمیم از محلول آبی در سیستم ناپیوسته توسط تمامی جاذب ها بررسی شد. اثر پارمترهای pH، مقدار جاذب، زمان تماس، غلظت اولیه یون های فلزی و دما توسط جاذب سنتز شده به روش حلال گرمایی و آمین دار شده به روش رفلاکس بررسی گردید.
یافته ها: نتایج FTIR، XRD و VSMنشان داد که جاذب سنتز شده به روش همرسوبی دارای خاصیت مغناطیسی بهتری است. جاذب مغناطیسی شده به روش حلال گرمایی و آمین دار شده به روش رفلاکس از ظرفیت جذب بالاتری (207میلی گرم بر گرم) برخوردار است. درحالی که ظرفیت جذب نانوجاذب آمین دار شده به روش سرد 82 میلی گرم بر گرم بود. داده های به دست آمده با مدل هم دمای فرندلیخ و مدل سینتیکی شبه مرتبه ی دوم همخوانی داشتند.
بحث و نتیجه گیری: بر اساس نتایج FTIR، XRD و VSM،نانوجاذب سنتز شده به روش همرسوبی خاصیت مغناطیس بهتری داشت درحالی که ظرفیت جذب آن کاهش یافت.اشغال گروه های کربوکسیل موجود در سطح اکسیدگرافن توسط ذرات آهن می تواند موجب کاهش اتصال گروه های عاملی آمین در سطح جاذب شود. نتیجه حاصل از آنالیز عنصری نیز تأیید کننده این نتیجه بود. زیرا میزان عنصر نیتروژن این نانوجاذب نسبت به نانوجاذب سنتز شده به روش حلال گرمایی کاهش یافت. نانوجاذب مغناطیسی شده به روش حلال گرمایی و عامل دار شده به روش رفلاکس جهت حذف کادمیم کارآمدتر است. همچنین جذب کادمیم توسط نانوکامپوزیت سنتز شده به صورت گرماگیر و خودبه خودی است.
المصادر:
- Khan, S. Ahmad, I., Tahir shah, M. Rehman, S. Khaliq, A. 2009. Use of constructed wetland for the removal of heavy metals from industrial wastewater, Journal of Environmental Management 90: 3451–3457.
- Sträter, E., Westbeld, A., Klemm, O., 2010. Pollution in coastal fog at Alto Patache, Northern Chile, Environmental Science and Pollution Research, 17(9): 1563-1573.
- Arruti, A., Fernández-Olmo, I., Irabien, Á., 2010. Evaluation of the contribution of local sources to trace metals levels in urban PM2. 5 and PM10 in the Cantabria region (Northern Spain), Journal of Environmental Monitoring, 12(7): 1451-1458.
- Zhang, M., Xie, X., Tang, M., Criddle, C., Cui, Y., Wang, S., 2013. Magnetically ultraresponsive nanoscavengers for next-generation water purification systems, Nature Communications, 4: 1-13.
- Barakat, M.A., 2011. New trends in removing heavy metals from industrial wastewater, Arabian Journal of Chemistry, 4(4): 361-377.
- Beyersmann, D. Hartwig, A. 2008. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms, Archives of Toxicology, 82(8): 493-512.
- Kunhikrishnan, A., Bolan, N.S., Müller, K., Laurenson, S., Naidu, R., Kim, W., 2012. The influence of wastewater irrigation on the transformation and bioavailability of heavy metal (loid) s in soil, Advances in Agronomy, 115: 216-273.
- Wang, F.Y., Wang, H., Ma, J. W., 2010. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal, Journal of Hazardous Materials, 177(1): 300-306.
- Park, S., Ruoff, R.S., 2009. Chemical methods for the production of graphenes, Nature Nanotechnology, 4(4): 217-224.
- Liu, Y., Meng, X., Luo, M., Meng, M., Ni, L., Qiu, J., Hu, Z., Liu, F., Zhong, G., Liu, Z., 2015. Synthesis of hydrophilic surface ion-imprinted polymer based on graphene oxide for removal of strontium from aqueous solution, Journal of Materials Chemistry A, 3(3): 1287-1297.
- Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S., 2010. Graphene and graphene oxide: synthesis, properties, and applications, Advanced Materials, 22(35): 3906-3924.
- Hu, L., Yang, Z., Cui, L., Li, Y., Ngo, H.H., Wang, Y., Wei, Q., Ma, H., Yan, L., Du, B., 2016. Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb (II) and methylene blue, Chemical Engineering Journal, 287: 545-556.
- Ma, X., Tao, H., Yang, K., Feng, L., Cheng, L., Shi, X., Li, Y., Guo, L., Liu, Z., 2012. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging, Nano Research, 5(3): 199-212.
- Wang, C., Feng, C., Gao, Y., Ma, X., Wu, Q., Wang, Z., 2011. Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution, Chemical Engineering Journal, 173(1): 92-97.
- Kazemi, E. Dadfarnia, S. Shabani, A. 2015. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions, Talanta, 141: 273-278.
Vukovi´, G.D., Marinkovi´, A.D., Coli´, M., Mirjana Ð. Risti ´, M.D., 2010. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes, Chemical Engineering Journal, 157: 238–248.
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(7):1558-1565.
Ai, L., Zhang, C., Chen, Z., 2011. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite, Journal of Hazardous Materials, 192(3):1515-1524.
Azizi, K., Karimi, M., Shaterianb, H.R., Heydari, A., 2014. Ultrasound irradiation for the green synthesis of chromenes using L-arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst, The Royal Society of Chemistry, 4: 42220-42225.
Zawisza, B., Baranik, A., Malicka, E., Talik, E., Sitko, R., 2016. Preconcentration of Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) with ethylenediamine-modified graphene oxide, Microchimica Acta, 183(1): 231-240.
Cui, Y., Liu, S., Hu, Z.J., Liu, X.H., Gao, H.W., 2011. Solid-phase extraction of lead (II) ions using multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine, Microchim Acta, 174:107–113.
Veli, S., Alyüz, B., 2007. Adsorption of copper and zinc from aqueous solutions by using natural clay, Journal of Hazardous Materials, 149(1): 226-233.
Guo X., Du B., Wei Q., Yang J., Hu L., Yan L., 2014. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. Journal of Hazardous Material, 278:211-20.
Li Y.H., Ding J., Luan Z., Di Z., Zhu Y., Xu C., 2003. Competitive adsorption of Pb 2+, Cu 2+ and Cd 2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41:2787-92.
Hadavifar M., Bahramifar N., Younesi H., Li Q., 2014. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chemical Engineering Journal, 237:217-28.
Deng J.H., Zhang X.R., Zeng G.M., Gong J.L., Niu Q.Y., Liang J., 2013. Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chemical Engineering Journal, 226:189-200.
Rodrigues L.A., da Silva M.L.C.P., Alvarez-Mendes M.O., dos Reis Coutinho A., Thim G.P., 2011. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chemical Engineering Journal, 174:49-57.
Singh, A.K., 2005. Advanced X-Ray Techniques in Research and Industry'', IOS Press, Washington DC.
Wang, D., Liu, L., Jiang, X., Yu, J., Chen, X., Chen, X., 2015. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin, Applied Surface Science, 329: 197–205.
Ji, Z., Zhu, G., Shen, X., Zhou, H., Wu, C., Wang, M., 2012. Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation, New Journal of Chemistry, 36: 1774–1780.
Rusu, E., Rusu, G., Dorohoi, D.-O.O., 2009. Influence of temperature on structures of polymers with ε-caprolactam units studied by FT-IR spectroscopy, Polimery, 54: 347–353.
Faraji, M.; Yamini, Y.; Rezaee, M., 2010. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications, Journal of Iranian Chemistry Society 7: 1-37.
33.Wang, J. Sun, J. Sun, Q. Chen, Q. 2003. One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties, Materials Research Bulletin, 38(7): 1113-1118.
Kosa S.A., Al-Zhrani G., Salam M.A. 2012. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 181:159-68.
Dubey S.P., Gopal K. 2007. Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste material: a comparative study. Journal of Hazardous Materials, 145:465-70.
Dehghani M.H., Sanaei D., Ali I., Bhatnagar A., 2016. Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies, Journal of Molecular Liquids, 215:671-9.
Yuan Y., Zhang G., Li Y., Zhang G., Zhang F., Fan X. 2013. Poly (amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions. Polymer Chemistry, 4:2164-7.
Cui L., Guo X., Wei Q., Wang Y., Gao L., Yan L. 2015. Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism. Journal of Colloid Interface Science, 439:112-20.
Guo X., Du B., Wei Q., Yang J., Hu L., Yan L., 2014. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. Journal of Hazardous Materials, 278:211-20.
Zhang F., Wang B., He S., Man R. 2014. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. Journal of Chemical and Engineering Data, 59:1719-26.
_||_
- Khan, S. Ahmad, I., Tahir shah, M. Rehman, S. Khaliq, A. 2009. Use of constructed wetland for the removal of heavy metals from industrial wastewater, Journal of Environmental Management 90: 3451–3457.
- Sträter, E., Westbeld, A., Klemm, O., 2010. Pollution in coastal fog at Alto Patache, Northern Chile, Environmental Science and Pollution Research, 17(9): 1563-1573.
- Arruti, A., Fernández-Olmo, I., Irabien, Á., 2010. Evaluation of the contribution of local sources to trace metals levels in urban PM2. 5 and PM10 in the Cantabria region (Northern Spain), Journal of Environmental Monitoring, 12(7): 1451-1458.
- Zhang, M., Xie, X., Tang, M., Criddle, C., Cui, Y., Wang, S., 2013. Magnetically ultraresponsive nanoscavengers for next-generation water purification systems, Nature Communications, 4: 1-13.
- Barakat, M.A., 2011. New trends in removing heavy metals from industrial wastewater, Arabian Journal of Chemistry, 4(4): 361-377.
- Beyersmann, D. Hartwig, A. 2008. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms, Archives of Toxicology, 82(8): 493-512.
- Kunhikrishnan, A., Bolan, N.S., Müller, K., Laurenson, S., Naidu, R., Kim, W., 2012. The influence of wastewater irrigation on the transformation and bioavailability of heavy metal (loid) s in soil, Advances in Agronomy, 115: 216-273.
- Wang, F.Y., Wang, H., Ma, J. W., 2010. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal, Journal of Hazardous Materials, 177(1): 300-306.
- Park, S., Ruoff, R.S., 2009. Chemical methods for the production of graphenes, Nature Nanotechnology, 4(4): 217-224.
- Liu, Y., Meng, X., Luo, M., Meng, M., Ni, L., Qiu, J., Hu, Z., Liu, F., Zhong, G., Liu, Z., 2015. Synthesis of hydrophilic surface ion-imprinted polymer based on graphene oxide for removal of strontium from aqueous solution, Journal of Materials Chemistry A, 3(3): 1287-1297.
- Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S., 2010. Graphene and graphene oxide: synthesis, properties, and applications, Advanced Materials, 22(35): 3906-3924.
- Hu, L., Yang, Z., Cui, L., Li, Y., Ngo, H.H., Wang, Y., Wei, Q., Ma, H., Yan, L., Du, B., 2016. Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb (II) and methylene blue, Chemical Engineering Journal, 287: 545-556.
- Ma, X., Tao, H., Yang, K., Feng, L., Cheng, L., Shi, X., Li, Y., Guo, L., Liu, Z., 2012. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging, Nano Research, 5(3): 199-212.
- Wang, C., Feng, C., Gao, Y., Ma, X., Wu, Q., Wang, Z., 2011. Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution, Chemical Engineering Journal, 173(1): 92-97.
- Kazemi, E. Dadfarnia, S. Shabani, A. 2015. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions, Talanta, 141: 273-278.
Vukovi´, G.D., Marinkovi´, A.D., Coli´, M., Mirjana Ð. Risti ´, M.D., 2010. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes, Chemical Engineering Journal, 157: 238–248.
Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(7):1558-1565.
Ai, L., Zhang, C., Chen, Z., 2011. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite, Journal of Hazardous Materials, 192(3):1515-1524.
Azizi, K., Karimi, M., Shaterianb, H.R., Heydari, A., 2014. Ultrasound irradiation for the green synthesis of chromenes using L-arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst, The Royal Society of Chemistry, 4: 42220-42225.
Zawisza, B., Baranik, A., Malicka, E., Talik, E., Sitko, R., 2016. Preconcentration of Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) with ethylenediamine-modified graphene oxide, Microchimica Acta, 183(1): 231-240.
Cui, Y., Liu, S., Hu, Z.J., Liu, X.H., Gao, H.W., 2011. Solid-phase extraction of lead (II) ions using multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine, Microchim Acta, 174:107–113.
Veli, S., Alyüz, B., 2007. Adsorption of copper and zinc from aqueous solutions by using natural clay, Journal of Hazardous Materials, 149(1): 226-233.
Guo X., Du B., Wei Q., Yang J., Hu L., Yan L., 2014. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. Journal of Hazardous Material, 278:211-20.
Li Y.H., Ding J., Luan Z., Di Z., Zhu Y., Xu C., 2003. Competitive adsorption of Pb 2+, Cu 2+ and Cd 2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41:2787-92.
Hadavifar M., Bahramifar N., Younesi H., Li Q., 2014. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chemical Engineering Journal, 237:217-28.
Deng J.H., Zhang X.R., Zeng G.M., Gong J.L., Niu Q.Y., Liang J., 2013. Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chemical Engineering Journal, 226:189-200.
Rodrigues L.A., da Silva M.L.C.P., Alvarez-Mendes M.O., dos Reis Coutinho A., Thim G.P., 2011. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chemical Engineering Journal, 174:49-57.
Singh, A.K., 2005. Advanced X-Ray Techniques in Research and Industry'', IOS Press, Washington DC.
Wang, D., Liu, L., Jiang, X., Yu, J., Chen, X., Chen, X., 2015. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin, Applied Surface Science, 329: 197–205.
Ji, Z., Zhu, G., Shen, X., Zhou, H., Wu, C., Wang, M., 2012. Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation, New Journal of Chemistry, 36: 1774–1780.
Rusu, E., Rusu, G., Dorohoi, D.-O.O., 2009. Influence of temperature on structures of polymers with ε-caprolactam units studied by FT-IR spectroscopy, Polimery, 54: 347–353.
Faraji, M.; Yamini, Y.; Rezaee, M., 2010. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications, Journal of Iranian Chemistry Society 7: 1-37.
33.Wang, J. Sun, J. Sun, Q. Chen, Q. 2003. One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties, Materials Research Bulletin, 38(7): 1113-1118.
Kosa S.A., Al-Zhrani G., Salam M.A. 2012. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 181:159-68.
Dubey S.P., Gopal K. 2007. Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste material: a comparative study. Journal of Hazardous Materials, 145:465-70.
Dehghani M.H., Sanaei D., Ali I., Bhatnagar A., 2016. Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies, Journal of Molecular Liquids, 215:671-9.
Yuan Y., Zhang G., Li Y., Zhang G., Zhang F., Fan X. 2013. Poly (amidoamine) modified graphene oxide as an efficient adsorbent for heavy metal ions. Polymer Chemistry, 4:2164-7.
Cui L., Guo X., Wei Q., Wang Y., Gao L., Yan L. 2015. Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism. Journal of Colloid Interface Science, 439:112-20.
Guo X., Du B., Wei Q., Yang J., Hu L., Yan L., 2014. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. Journal of Hazardous Materials, 278:211-20.
Zhang F., Wang B., He S., Man R. 2014. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. Journal of Chemical and Engineering Data, 59:1719-26.