بررسی اثر به کارگیری هم زمان تابش نور فرابنفش در اولترافیلترسیون مواد پلیمری خارج سلولی استخراج شده از بیوراکتور غشایی بر کاهش گرفتگی غشاهای PVDF/TiO2
الموضوعات :مریم توکل مقدم 1 , سید محمد علی صفوی 2
1 - استادیار، معاونت فناوری، پژوهشگاه صنعت نفت، تهران، ایران *(مسوول مکاتبات)
2 - استادیار، پژوهشکده پالایش، پژوهشگاه صنعت نفت، تهران، ایران
الکلمات المفتاحية: TiO2, بیوراکتور غشایی, نور فرابنفش, مواد پلیمری خارج سلولی, گرفتگی,
ملخص المقالة :
زمینه و هدف: هدف از این پژوهش بررسی اثر اصلاح مشخصات سطحی غشای پلی وینیلیدین فلوراید (PVDF)بر عملکرد فیلتراسیون و کاهش گرفتگی در بیوراکتورهای غشایی است. این مطالعه، با توجه به خواص فتوکاتالیستی نانوذرات TiO2 تحت تابش نور فرابنفش UV)) و با هدف بررسی این خاصیت در کاهش گرفتگی ناشی از مواد پلیمری خارج سلولی واقعی استخراج شده از بیوراکتور غشایی غوطه ور به عنوان مهم ترین عامل ایجاد گرفتگی غشا انجام گرفت. روش بررسی: بدین منظور با توجه به خواص فتوکاتالیستی نانوذرات TiO2 تحت تابش نور فرابنفش UV)) عملکرد غشای PVDF/TiO2 در فیلتراسیون موارد پلیمری خارج سلولی (EPS) استخراج شده از بیوراکتور غشایی مورد استفاده در تصفیه پساب پالایشگاهی ارزیابی و با غشاهای PVDF فاقد نانوذارت TiO2 مقایسه گردید. یافته ها:نتایج حاکی از بهبود تراوش پذیری و نرخ بازیابی فلاکس در غشای نانوکامپوزیت PVDF/TiO2 تحت تابش UV به واسطه فعال- سازی خواص سوپر آب دوستی است به طوری که کاهش مقاومت برگشت ناپذیر غشا در فیلتراسیون EPS تحت تابش UV تا حدود m-1 101236/0 و کاهش نسبی گرفتگی کل برای غشا PVDF/TiO2 در حدود %44 نسبت به غشا PVDF خالص از دیگر نتایج این مطالعه است. براساس نتایج آزمایشات با اولترافیلتراسیون ترکیبی با UV، بهترین نرخ بازیابی فلاکس به میزان حدود 90 درصد برای غشا PVDF/TiO2 قابل حصول است. بحث و نتیجه گیری:با توجه به اینکه EPS از عوامل مهم بروز گرفتگی در بیوراکتورهای غشایی مورد استفاده در تصفیه پساب های پالایشگاهی است به کارگیری اولترافیلتراسیون ترکیبی با UV در کاهش گرفتگی غشا در بیوراکتورهای غشایی مؤثر است و می تواند زمینه ساز تحقیقات آینده باشد.
- Judd, S., The MBR book. 1 ed. 2006: Elsevier.
- Zhang, M., et al., Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. J. Membr. Sci. , 2015. 175p. 59-67.
- Barzin, J. and Esmaeili, M., Memberane fouling and regeneration methods. 2009: Iran Polymer and Petrochemical Institute (In Persian).
- Kochkodan V., Hilal N., Ploymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci., 2014. 206p. 116–140.
- Kim, J. and Bruggen, V., The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. T Environ. Pollut., 2010. 158p. 2335-2349.
- NgL. Y. , Leo C. P. , Hilal N. , Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013. 308p. 15-33.
- Diebold, U., The surface science of titanium dioxide. Surf. Sci. Rep., 2003. 48: p. 53-229.
- Le-Clech, P. and Jefferson, B., Critical flux determination by the flux-step method in a submerged membrane bioreactor. J. Membr. Sci., 2003. 227(1-2): p. 81-93.
- Drews, A., Membrane Fouling in Membrane Bioreactors—Characterisation, Contradictions, Cause and Cures,. J. Membr. Sci. , 2010. 363p. 1-28.
- Lin, H., et al., A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 2014. 460: p. 110-125.
- Clech, P. L., Jefferson, B., Chang, I. and Judd, S., Critical flux determination by the flux-step method in a submerged membrane bioreactor. Journal of Membrane Science, 2003. 227(1–2): p. 81-93.
- Yamato, N., Kimura, K., Miyoshi, T. and Watanabe, Y., Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials. Journal of Membrane Science, 2006. 280(1–2): p. 911-919.
- Tavakol Moghadam, M. et al., Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration. J. APPL. POLYM. SCI. , 2015. 132(21): p. 41731-41731.
- Zhang, G., et al., Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. Journal of Membrane Science, 2013. 436: p. 163-173.
- Mulder , M., Basic principles of membrane technology. 1996: Kluwer Academic Publishers.
- Okhovat A., Ghafarian V., Ehsan Saljooghi, polymeric membrane fabrication, modification and characterization. 2013: Iranian Students Booking Agency (In Persian).
- Razmjou, A., Mansouri, J. and Chen, V., The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. Journal of Membrane Science, 2011. 378(1–2): p. 73-84.
- Rahimpour, A., Madaeni, S. S., Taheri, A. H. and Mansourpnanh, Y., Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. , 2008. 313p. 158-169.
- Mendret, J., Brosillon S. , Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants Sep. Purif. Technol., 2013. 111: p. 9-19.
- X. Bian, Yang X. , X. Lu, Effect of Nano-TiO2 Particles on the Performance of PVDF, PVDF-g-(Maleic anhydride), and PVDF-g-Poly(acryl amide) Membranes. Ind. Eng. Chem. Res., 2011. 50: p. 12113–12123.
- Teow, Y. H., Ahmad, A. L., Lim, J. K. and Ooi, B. S., Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method. Desalination, 2012. 295: p. 61-69.
- Lim, B., Choi, B., Yu, S. and Lee, C., Effects of operational parameters on aeration on/off time in an intermittent aeration membrane bioreactor. Desalination, 2007. 202(1): p. 77-82.
- Salgin, S., Salgin, U. and Bahadir, S., Zeta Potentials and Isoelectric Points of Biomolecules: The Effects of Ion Types and Ionic Strengths. Int. J. Electrochem. Sci., 2012. 7: p. 12404 – 12414.
_||_
- Judd, S., The MBR book. 1 ed. 2006: Elsevier.
- Zhang, M., et al., Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. J. Membr. Sci. , 2015. 175p. 59-67.
- Barzin, J. and Esmaeili, M., Memberane fouling and regeneration methods. 2009: Iran Polymer and Petrochemical Institute (In Persian).
- Kochkodan V., Hilal N., Ploymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci., 2014. 206p. 116–140.
- Kim, J. and Bruggen, V., The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. T Environ. Pollut., 2010. 158p. 2335-2349.
- NgL. Y. , Leo C. P. , Hilal N. , Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013. 308p. 15-33.
- Diebold, U., The surface science of titanium dioxide. Surf. Sci. Rep., 2003. 48: p. 53-229.
- Le-Clech, P. and Jefferson, B., Critical flux determination by the flux-step method in a submerged membrane bioreactor. J. Membr. Sci., 2003. 227(1-2): p. 81-93.
- Drews, A., Membrane Fouling in Membrane Bioreactors—Characterisation, Contradictions, Cause and Cures,. J. Membr. Sci. , 2010. 363p. 1-28.
- Lin, H., et al., A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 2014. 460: p. 110-125.
- Clech, P. L., Jefferson, B., Chang, I. and Judd, S., Critical flux determination by the flux-step method in a submerged membrane bioreactor. Journal of Membrane Science, 2003. 227(1–2): p. 81-93.
- Yamato, N., Kimura, K., Miyoshi, T. and Watanabe, Y., Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials. Journal of Membrane Science, 2006. 280(1–2): p. 911-919.
- Tavakol Moghadam, M. et al., Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration. J. APPL. POLYM. SCI. , 2015. 132(21): p. 41731-41731.
- Zhang, G., et al., Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. Journal of Membrane Science, 2013. 436: p. 163-173.
- Mulder , M., Basic principles of membrane technology. 1996: Kluwer Academic Publishers.
- Okhovat A., Ghafarian V., Ehsan Saljooghi, polymeric membrane fabrication, modification and characterization. 2013: Iranian Students Booking Agency (In Persian).
- Razmjou, A., Mansouri, J. and Chen, V., The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. Journal of Membrane Science, 2011. 378(1–2): p. 73-84.
- Rahimpour, A., Madaeni, S. S., Taheri, A. H. and Mansourpnanh, Y., Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. , 2008. 313p. 158-169.
- Mendret, J., Brosillon S. , Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants Sep. Purif. Technol., 2013. 111: p. 9-19.
- X. Bian, Yang X. , X. Lu, Effect of Nano-TiO2 Particles on the Performance of PVDF, PVDF-g-(Maleic anhydride), and PVDF-g-Poly(acryl amide) Membranes. Ind. Eng. Chem. Res., 2011. 50: p. 12113–12123.
- Teow, Y. H., Ahmad, A. L., Lim, J. K. and Ooi, B. S., Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method. Desalination, 2012. 295: p. 61-69.
- Lim, B., Choi, B., Yu, S. and Lee, C., Effects of operational parameters on aeration on/off time in an intermittent aeration membrane bioreactor. Desalination, 2007. 202(1): p. 77-82.
- Salgin, S., Salgin, U. and Bahadir, S., Zeta Potentials and Isoelectric Points of Biomolecules: The Effects of Ion Types and Ionic Strengths. Int. J. Electrochem. Sci., 2012. 7: p. 12404 – 12414.