اثر نویز در پیشبینی زمانی جریان و انتقال آلودگی در محیط متخلخل با استفاده از مدلهای هوش مصنوعی
الموضوعات : Water and Environmentشهرام موسوی 1 , وحید نورانی 2 , محمد تقی اعلمی 3
1 - استادیار، باشگاه پژوهشگران جوان و نخبگان، واحد میانه، دانشگاه آزاد اسلامی، میانه، ایران *(مسوول مکاتبات)
2 - استاد، گروه مهندسی آب، دانشکده مهندسی عمران، دانشگاه تبریز، ایران
3 - استاد، گروه مهندسی آب، دانشکده مهندسی عمران، دانشگاه تبریز، ایران
الکلمات المفتاحية: رفع نویز موجکی, هوش مصنوعی, انتقال آلودگی, محیط متخلخل,
ملخص المقالة :
زمینه و هدف: عدم قطعیت پارامترهای صحرایی، نویز در داده های مشاهداتی و شرایط مرزی نامشخص از مهمترین عوامل محدود کننده در مدلسازی جریان و انتقال آلودگی در محیطهای متخلخل است. روش بررسی: در این تحقیق، دشت میاندوآب بهعنوان مطالعه موردی برای شبیه سازی تراز آب زیرزمینی و غلظت کلراید انتخاب شد. برای مدلسازی زمانی انتقال آلودگی از روشهای هوش مصنوعی استفاده شد. در روش پیشنهادی، ابتدا سری های زمانی تراز آب زیرزمینی و غلظت کلراید در پیزومترهای مختلف با استفاده از روش آستانه موجک رفع نویز شدند. در ادامه اثر نویز و رفع نویز در سری های زمانی تراز آب زیرزمینی و غلظت کلراید در مدلهای هوش مصنوعی موردبررسی قرارگرفت. برای این منظور، 14 پیزومتر مختلف با استفاده از شبکه عصبی مصنوعی و سیستم عصبی-فازی تطبیقی برای تخمین غلظت کلراید در یک ماه بعد، آموزش و اعتبارسنجی شدند. یافته ها: نتایج نشان داد که روش آستانه موجک برای رفع نویز سری های زمانی می تواند تا 25 درصد کارایی مدلهای هوش مصنوعی را افزایش دهد. همچنین توانایی مدل عصبی-فازی تطبیقی در هر دو مرحله آموزش و صحت سنجی به دلیل کارایی منطق فازی برای غلبه بر عدم قطعیت پدیده از شبکه عصبی مصنوعی بیش تر بوده است. بحث و نتیجه گیری: استفاده از رفع نویز موجکی سری های زمانی به عنوان پیش پردازش داده ها در پیش بینی زمانی جریان آب زیرزمینی و انتقال آلاینده ها، کارایی مدل های هوش مصنوعی را افزایش می دهد.
