کارایی نانوذرات آهن صفر ظرفیتی در کاهش غلظت نیترات در آب با تأکید بر اثر اسیدیته
الموضوعات :علی دریابیگی زند 1 , شیما ضیاء جهرمی 2
1 - استادیار، دانشکده محیطزیست، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران *(مسوول مکاتبات)
2 - دانشجوی دکتری، دانشکده محیط زیست، برنامه ریزی و معماری، دانشگاه گریفیث، کویینس لند، استرالیا
الکلمات المفتاحية: نیترات, PH, سنتز, آهن صفر ظرفیتی, نانوذرات,
ملخص المقالة :
زمینه و هدف: تأمین آب شرب سالم در جوامع امروزی یکی از مهم ترین چالش های محیطزیستی در سراسر دنیا می باشد. آلودگی منابع آب به نیترات در ایران یک خطرجدی برای سلامتی انسان محسوب می شود.هدف اصلی این تحقیق استفاده از نانوذرات آهن صفر سنتز شده جهت حذف نیترات از آب سینتتیک و بررسی تأثیر تغییر pH بر کارایی حذف نیترات توسط این نانوذرات می باشد. روش بررسی: نانوذرات آهن صفر در آزمایشگاه سنتز شده و پس از تعیین اندازه آن ها توسط میکروسکوپ الکترونی عبوری جهت حذف نیترات از آب مورد استفاده قرار گرفت. در این مطالعه اثر مقدار نانوذرات مصرفی بر راندمان حذف نیترات از آب مورد ارزیابی قرار گرفت. یافته ها: نتایج نشان داد کارایی نانوذرات آهن صفر در حذف نیترات از آب در شرایط اسیدی بیش از شرایط خنثی و قلیایی می باشد. همچنین افزایش pH در حین آزمایش در شرایط ابتدایی اسیدی و خنثی مشاهده شد و بخش عمده واکنش حذف در مراحل ابتدایی آزمایش حاصل گردید. بحث و نتیجه گیری: استفاده از مقادیر نسبتاً کم نانوذرات آهن صفر می تواند غلظت نیترات در آب را به طور قابل ملاحظه ای کاهش دهد.بخش عمده واکنش حذف به دلیل غالب بودن شرایط اسیدی در مراحل ابتدایی آزمایش حاصل گردید. با توجه به یافته های تحقیق به نظر می رسد استفاده از نانوذرات آهن صفر یک روش مؤثر و اقتصادی جهت حذف نیترات از آب شرب می باشد که می تواند در مقیاس های بزرگ نیز مورد آزمایش و استفاده قرار گیرد.
- Honda, R. J., Keene, V., Daniels, L., Walker, S. L. 2014. Removal of TiO2 Nanoparticles During Primary Water Treatment: Role of Coagulant Type, Dose, and Nanoparticle Concentration. Environmental Engineering Science, Vol. 31, pp. 127-134.
- Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, D.M., Dilbaghi, N. 2014. Nanothecnology-based water treatment strategies. Journal of Nanoscience and Nanotechnology, Vol. 14, pp. 1838-1858.
- Schussler, W., Nitschke, L. 1999. Death of fish due to surface water pollution by liquid manure or untreated wastewater: Analytical preservation of evidence by HPLC. Water research, Vol. 33, pp. 2884-2887.
- Brane, J., Li, Q., Alvarez, P.J.J. 2011. Nanotechnology-enabled water treatment and reuse: Emerging opportunities and challenges for developing countries. Trends in Food Science & Technology, Vol. 22, pp.618-624.
- Yang, G.C.C., Lee, H.L. 2005. Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research, Vol. 39, pp. 884-894.
- Fewtrell, L. 2004. Drinking-water nitrate, Methemoglobinema and global burden of disease: a discussion. Environmental Health Perspective, Vol. 112, pp. 1371-1374.
- Wasik, E., Bohdziewicz, J., Blaszczyk, M. 2001. Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration membrane. Process Biochemistry, Vol. 37, pp. 57-64.
- Zulin, S., Liangliang, B. 2007. Trans-jurisdictional River Basin Water Pollution Management and Cooperation in China: Case Study of Jiangsu/ Zhejiang Province in Comparative Global Context. China Population, Resources and Environment, Vol. 17, pp. 3-9.
- Zhang, J., Hao, Z., Zhang, Z., Yang, Y., Xu, X. 2010. Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Safety and Environmental Protection, Vol.88, pp. 439-445.
- Magalheas, N.S., Mosqueira, V.C. 2010. Nanotechnology applied to the treatment of malaria. Advanced Drug Delivery Reviews. Vol. 62, pp. 560-575.
- Alvarez, P.J.J., Colvin, V., Lead, J., Stone, V. 2009. Research priorities to advance eco-responsible nanotechnology. ACS Nano, Vol. 3, pp. 1616-1619.
- Bruggen, B. V., Vandecasteele, C. 2003. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Journal of Environmental Pollution, Vol. 122, pp. 435-445.
- Sabbatini, P., Yrazu, F., Rossi, F., thern, G., Marajofsky, A. 2010. Fabrication and characterization of iron oxide ceramic membranes for arsenic removal. Water research, Vol. 44, pp. 5702-5712.
- Zhang, H., Jin, H.J., Qin, C.H. 2006. Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Transactions of Nonferrous Metals Society of China, Vol. 16, pp. 345-349.
- Zhang, W. X. 2003. Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, Vol. 5, pp. 323-332.
- Groza, N., Radulescu, R., Panturu, E., Olteanu, A.F., Panturu, R.I. 2009. Zero-Valent Iron Used for Radioactive Waste Water Treatment. Chemical Bulletin Polytehnica University, Vol. 54, pp. 21-25.
- Kassaeea, M.Z., Motamedi, E., Mikhak, A., Rahnemaie, R. 2011. Nitrate removal from water using iron nanoparticles produced by arc discharge. Chemical Engineering Journal, Vol. 166, pp. 490-495.
- Xiong, Z., Zhao, D., Pan, G. 2009. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles. Journal of Nanoparticle Research, Vol. 11, pp. 807-819.
- Choe, S., Chang, Y.Y., Hwang, K.Y., Khim, J. 2000. Kinetics of reductive denitrifcation by nanoscale zero-valent iron. Chemosphere, Vol. 41, pp. 1307-1311.
- Liou, Y.H., Lo, S.L., Lin, C.J., Kuan, W.H., Weng, S.C. 2005. Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. Journal of Hazardous Materials, Vol. 127, pp. 102-110.
- Li, X.Y., Chu, H.P. 2003. Membrane bioreactor for the drinking water treatment of polluted surface water supplies. Water research, Vol. 37, pp. 4781-4791.
_||_
- Honda, R. J., Keene, V., Daniels, L., Walker, S. L. 2014. Removal of TiO2 Nanoparticles During Primary Water Treatment: Role of Coagulant Type, Dose, and Nanoparticle Concentration. Environmental Engineering Science, Vol. 31, pp. 127-134.
- Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, D.M., Dilbaghi, N. 2014. Nanothecnology-based water treatment strategies. Journal of Nanoscience and Nanotechnology, Vol. 14, pp. 1838-1858.
- Schussler, W., Nitschke, L. 1999. Death of fish due to surface water pollution by liquid manure or untreated wastewater: Analytical preservation of evidence by HPLC. Water research, Vol. 33, pp. 2884-2887.
- Brane, J., Li, Q., Alvarez, P.J.J. 2011. Nanotechnology-enabled water treatment and reuse: Emerging opportunities and challenges for developing countries. Trends in Food Science & Technology, Vol. 22, pp.618-624.
- Yang, G.C.C., Lee, H.L. 2005. Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research, Vol. 39, pp. 884-894.
- Fewtrell, L. 2004. Drinking-water nitrate, Methemoglobinema and global burden of disease: a discussion. Environmental Health Perspective, Vol. 112, pp. 1371-1374.
- Wasik, E., Bohdziewicz, J., Blaszczyk, M. 2001. Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration membrane. Process Biochemistry, Vol. 37, pp. 57-64.
- Zulin, S., Liangliang, B. 2007. Trans-jurisdictional River Basin Water Pollution Management and Cooperation in China: Case Study of Jiangsu/ Zhejiang Province in Comparative Global Context. China Population, Resources and Environment, Vol. 17, pp. 3-9.
- Zhang, J., Hao, Z., Zhang, Z., Yang, Y., Xu, X. 2010. Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Safety and Environmental Protection, Vol.88, pp. 439-445.
- Magalheas, N.S., Mosqueira, V.C. 2010. Nanotechnology applied to the treatment of malaria. Advanced Drug Delivery Reviews. Vol. 62, pp. 560-575.
- Alvarez, P.J.J., Colvin, V., Lead, J., Stone, V. 2009. Research priorities to advance eco-responsible nanotechnology. ACS Nano, Vol. 3, pp. 1616-1619.
- Bruggen, B. V., Vandecasteele, C. 2003. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Journal of Environmental Pollution, Vol. 122, pp. 435-445.
- Sabbatini, P., Yrazu, F., Rossi, F., thern, G., Marajofsky, A. 2010. Fabrication and characterization of iron oxide ceramic membranes for arsenic removal. Water research, Vol. 44, pp. 5702-5712.
- Zhang, H., Jin, H.J., Qin, C.H. 2006. Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Transactions of Nonferrous Metals Society of China, Vol. 16, pp. 345-349.
- Zhang, W. X. 2003. Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, Vol. 5, pp. 323-332.
- Groza, N., Radulescu, R., Panturu, E., Olteanu, A.F., Panturu, R.I. 2009. Zero-Valent Iron Used for Radioactive Waste Water Treatment. Chemical Bulletin Polytehnica University, Vol. 54, pp. 21-25.
- Kassaeea, M.Z., Motamedi, E., Mikhak, A., Rahnemaie, R. 2011. Nitrate removal from water using iron nanoparticles produced by arc discharge. Chemical Engineering Journal, Vol. 166, pp. 490-495.
- Xiong, Z., Zhao, D., Pan, G. 2009. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles. Journal of Nanoparticle Research, Vol. 11, pp. 807-819.
- Choe, S., Chang, Y.Y., Hwang, K.Y., Khim, J. 2000. Kinetics of reductive denitrifcation by nanoscale zero-valent iron. Chemosphere, Vol. 41, pp. 1307-1311.
- Liou, Y.H., Lo, S.L., Lin, C.J., Kuan, W.H., Weng, S.C. 2005. Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. Journal of Hazardous Materials, Vol. 127, pp. 102-110.
- Li, X.Y., Chu, H.P. 2003. Membrane bioreactor for the drinking water treatment of polluted surface water supplies. Water research, Vol. 37, pp. 4781-4791.