ارزیابی توان گیاه پالایی آب تره ( (Nasturium officinale L.در رفع آلودگی کادمیوم
الموضوعات :مریم جعفر زاده رزمی 1 , مهناز اقدسی 2 , احمد عبدل زاده 3 , حمیدرضا صادقی پور 4
1 - کارشناسیارشد قیزیولوژیگیاهی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران
2 - دانشیار گروه زیستشناسی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران (مسوول مکاتبات)
3 - استاد گروه زیستشناسی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران
4 - دانشیار گروه زیستشناسی، دانشکده علوم، دانشگاه گلستان، گرگان، ایران
الکلمات المفتاحية: آلودگی, آبتره, رشد, کادمیوم, گیاه پالایی,
ملخص المقالة :
زمینه و هدف: آلودگی محیط زیست به فلزات سنگین از مهمترین مسایلی است که می تواند بر روی رشد و نمو گیاهان و جانوران تا ثیر بسزایی داشته باشد. کادمیوم یک فلز آلاینده محیطی است که اثراتی سو بر فعالیت های فیزیولوژیکی گیاهان دارد. هدف از این پژوهش بررسی امکان رفع آلودگی آب های آلوده به کادمیوم با استفاده از گیاه آب تره است. روش بررسی: در این پژوهش اثر سطوح مختلف کلرید کادمیوم ( 0، 10، 50، 100، 300 و 500 میکرومولار) بر خصوصیات فیزیولوژیکی و توان جذب گیاه آب تره انجام شد. آزمایش د رقالب طرح کاملاً تصادفی با سه تکرار انجام شد. یافته ها: نتایج نشان داد که اثر سطوح مختلف تیمار کادمیوم بر خصوصیات فیزیولوژیکی و میزان کادمیوم در گیاه معنی دار بود. به طوری که وزن تر و خشک ریشه و اندام هوایی، ارتفاع ریشه و اندام هوایی، میزان رنگیزههای فتوسنتزی گیاه با افزایش سطوح کادمیوم روند کاهشی داشتند. همچنین هرچه سطوح کادمیوم در محیط کشت افزایش یافت، غلظت کادمیوم در ریشه و اندام هوایی گیاه افزایش یافت. بیش ترین محتوای کادمیوم در هر دو اندام ریشه و ساقه گیاه آب تره درغلظت 500 میکرومولار کادمیوم مشاهده شده است. بحث و نتیجه گیری: نتایج حاضر نشان داد که گیاه آبتره توانایی پالایش کادمیوم از آبهای آلوده به این فلز را دارد. بحث و نتیجهگیری: نتایج حاضر نشان داد که گیاه آبتره توانایی پالایش کادمیوم از آبهای آلوده به این فلز را دارد.
1. Antoniadis, N. and Alloway, B.J. 2001. Availability of Cd, Ni and Zn to rye grass in seawage sludge treated soils at different temperatures. Water, Air and Soil Pollution, Vol. 132, pp. 201– 204.
2. Baryla, A., Carrier, P., Frank, F., Coulomb, C., Sahut, C., Havaux, M. 2001. Leaf chlorosis oilseed rape plants (Brassica napus) grown oncadmium-polluted soil: Causes and consequences for phothosynthesis and growth. Planta, Vol.212, pp. 696-709.
3. Baszynki, T., Wajda, L., Krol, M., Wolinska, D., Krupa, Z., Tukendorf, A. 1980. Photosynthetic actinities of cadmium –treated tomato plants. Physiologia Plantarum,Vol. 48, pp. 365-370.
4. Benavides, M.P., Gallego, S.M., Tomaro, M.L. 2005. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, Vol.171, pp.21-34.
5. Swaddiwudhipong, W., Nguntra, N., Kaewnate, Y., Mahasakpan, P. Limpatanachote, P., Jeekeeree, W., Punta, B., Funkhiew, T., Phopueng, I.m. 2015. Human health effects from cadmium exposure. Southeast Asian Journal Trop Med Public Health, Vol.1,pp. 133-142.
6. Mozafarian, V. 2013. Identification of Medicinal and Aromatic Plants of IRAN. Research Institute of Forest and Rangelands press. pp. 333-335 (Persian).
7. Salehi Sormaghi, M.H., 2010. Medicinal Plants. Doyaye Taghzieh press (Persian).
8. Broos, K., Beyens, H., Smolders, E. 2005. Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biology and Biochemistry. Vol.37, pp.573–579.
9. Chaney, R.L. 1983. Plant uptake of inorganic waste constituents. In: Parr, J.F., Marsh, P.B., Kla, J.M. (Eds.), Land Treatment of Hazardous Waste. Noyes Data Corporation, Park Ridge, NJ: 50–76.
10. Kara, Y. 2005. Bioaccumulation of Cu, Zn, and Ni from the wastewater by treated Nasturirium officinalis. International Journal of Science and Technology, Vol.2, pp.63-67.
11. Duman, F., Cicek, M., Sezen, G. 2007. Seasonal changes of metal accumulation and distribution in common club-rush (Schoenoplectuslacustris) and common reed (Phragmitesaustralis). Ecotoxicology, Vol. 16, pp. 457– 463
12. Banuelos, G.S. and Meeks, D.W. 1990. Accumulation of selenium in plant grown on selenium-treated soil. Journal Envrionment Quality, Vol. 19, pp.722-777.
13. Kumar, P., Dushnekov, V., Motto, H., Raskin, I. 1995. Phytoextraction- the use of plants to reove heavy metals from soils. Environmental Science Technology, Vol. 29, pp. 1232-1238.
14. Martins, L.L., Pedro Mourato, M. Ries, R., Carvalheiro, F., Almeida, A.M., Fevereiro, P., Cuypers, A., 2014. Responce to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiology Plan, Volt. 36, pp. 755-765.
15. John, R., P. Ahmad, K., Sharma, S. 2008. Effect of cadmium and lead on growth, biochemical parameters and uptake in LemnapolyrrhizaL. Plant Soil Environment. 54: 262–270.
16. Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, Vol. 24, pp. 1-15.
17. Sekabira, K., Oryem- Origa, H., Mutumba, G., Kakudidi, E., Basamba, T.A. 2011. Heavy metal phytoremediation by Commelina benghalensis (L) and Cynodondactylon (L) growing in Urban stream sediments. International Journal of Plant Physiology and Biochemistry, Vol. 3, pp.133-142.
18. Cluis, C. (2004). Junk-greedy greens: phytoremediation as a new option for soil decontamination. Biotechnology Journal, Vol.2, pp. 61 – 67.
19. Nocito, F., Lancilli, C., Crema, B., Fourcroy, P., Davidian, J., Attilio Sacchi, G. 2006. Heavy Metal Stress and Sulfate Uptake in Maize Roots. Plant Physiology, Vol. 141, pp. 1138-1148.
20. Mishra, V.K., Tripathi, B.D. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresourse Technology, Vol. 99, pp.7091– 7097.
21. Ma, L. Q., Angela, L., Rao, G.N. 1997. Effect of incubation and phophate rock on lead extrability and speciation in contaminated soils. Journal Environment Quality, Vol. 26, pp.801– 807.
22. Ewaise, E.A. 1997. Effects of cadmium nickel and lead on growth, chlorophyll content and proteins of weed. Biological Plantarum, Vol. 39, pp.403-410.
23. Jeliazkova, E.A., Craker, L.E. Xing, B. 2003. Seed germination of anise, caraway, and fennel in heavy metal contaminated solutions. Journal Herbs, Spices and Medicine Plants, Vol. 10, pp. 83-93.
24. Ludevid, D. Hofte, H., Himelblau, E., Chrispeels, M.J. 1992. The expression pattern of the tonoplast intrinsic protein Y-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiology, Vol.100, pp.1633 – 1639.
25. Stribley, D.P., Tinker, P.B., Snellgrove, R.C. 2006. Effect of vesicular mycorrhiza fungi on the relation of plant growth, internal phophorus concentration and phosphate analyses. European Journal of Soil Science, Vol.31, pp.655-672.
26. Li-Jin, L., Li, L., Miang-an, L., Xiao, Z., Dai-yu, Y. 2015. Cadmium accumulation characteristic emerged plant Nasturtium Officinalis. Resource and Environment in the Yangtze basin, Vol. 4, pp.1-4.
27. Duman, F., Leblebici, Z., Aksoy, A. 2009. Growth and bioaccumulation characteristics ofwatercress (Nasturtium officinale R. BR.) exposedto cadmium, cobalt and chromium. Chemistry Speciation and Bioavailability, Vol.2, pp.256-264.
28. Shin, H.W., Sidharthan, M., Young, K.S. 2002. Forest fire ash impact on micro- and macroalgae in the receiving waters of the east coast of South Korea. Mar. Pollution Bulletin, Vol.45, pp. 203-209.
29. Deng, H., Ye, Z.H., Wong, M.H. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environment Pollution, Vol. 132, pp. 29–40.
30. Zurayk, R., Sukkariyah, B., Baalbaki, R. 2001. Common hydrophytes as bioindicators of Ni, Cr and Cd pollution. Water Air Soil Pollution, Vol.127, pp. 373– 388.
_||_
1. Antoniadis, N. and Alloway, B.J. 2001. Availability of Cd, Ni and Zn to rye grass in seawage sludge treated soils at different temperatures. Water, Air and Soil Pollution, Vol. 132, pp. 201– 204.
2. Baryla, A., Carrier, P., Frank, F., Coulomb, C., Sahut, C., Havaux, M. 2001. Leaf chlorosis oilseed rape plants (Brassica napus) grown oncadmium-polluted soil: Causes and consequences for phothosynthesis and growth. Planta, Vol.212, pp. 696-709.
3. Baszynki, T., Wajda, L., Krol, M., Wolinska, D., Krupa, Z., Tukendorf, A. 1980. Photosynthetic actinities of cadmium –treated tomato plants. Physiologia Plantarum,Vol. 48, pp. 365-370.
4. Benavides, M.P., Gallego, S.M., Tomaro, M.L. 2005. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, Vol.171, pp.21-34.
5. Swaddiwudhipong, W., Nguntra, N., Kaewnate, Y., Mahasakpan, P. Limpatanachote, P., Jeekeeree, W., Punta, B., Funkhiew, T., Phopueng, I.m. 2015. Human health effects from cadmium exposure. Southeast Asian Journal Trop Med Public Health, Vol.1,pp. 133-142.
6. Mozafarian, V. 2013. Identification of Medicinal and Aromatic Plants of IRAN. Research Institute of Forest and Rangelands press. pp. 333-335 (Persian).
7. Salehi Sormaghi, M.H., 2010. Medicinal Plants. Doyaye Taghzieh press (Persian).
8. Broos, K., Beyens, H., Smolders, E. 2005. Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biology and Biochemistry. Vol.37, pp.573–579.
9. Chaney, R.L. 1983. Plant uptake of inorganic waste constituents. In: Parr, J.F., Marsh, P.B., Kla, J.M. (Eds.), Land Treatment of Hazardous Waste. Noyes Data Corporation, Park Ridge, NJ: 50–76.
10. Kara, Y. 2005. Bioaccumulation of Cu, Zn, and Ni from the wastewater by treated Nasturirium officinalis. International Journal of Science and Technology, Vol.2, pp.63-67.
11. Duman, F., Cicek, M., Sezen, G. 2007. Seasonal changes of metal accumulation and distribution in common club-rush (Schoenoplectuslacustris) and common reed (Phragmitesaustralis). Ecotoxicology, Vol. 16, pp. 457– 463
12. Banuelos, G.S. and Meeks, D.W. 1990. Accumulation of selenium in plant grown on selenium-treated soil. Journal Envrionment Quality, Vol. 19, pp.722-777.
13. Kumar, P., Dushnekov, V., Motto, H., Raskin, I. 1995. Phytoextraction- the use of plants to reove heavy metals from soils. Environmental Science Technology, Vol. 29, pp. 1232-1238.
14. Martins, L.L., Pedro Mourato, M. Ries, R., Carvalheiro, F., Almeida, A.M., Fevereiro, P., Cuypers, A., 2014. Responce to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiology Plan, Volt. 36, pp. 755-765.
15. John, R., P. Ahmad, K., Sharma, S. 2008. Effect of cadmium and lead on growth, biochemical parameters and uptake in LemnapolyrrhizaL. Plant Soil Environment. 54: 262–270.
16. Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, Vol. 24, pp. 1-15.
17. Sekabira, K., Oryem- Origa, H., Mutumba, G., Kakudidi, E., Basamba, T.A. 2011. Heavy metal phytoremediation by Commelina benghalensis (L) and Cynodondactylon (L) growing in Urban stream sediments. International Journal of Plant Physiology and Biochemistry, Vol. 3, pp.133-142.
18. Cluis, C. (2004). Junk-greedy greens: phytoremediation as a new option for soil decontamination. Biotechnology Journal, Vol.2, pp. 61 – 67.
19. Nocito, F., Lancilli, C., Crema, B., Fourcroy, P., Davidian, J., Attilio Sacchi, G. 2006. Heavy Metal Stress and Sulfate Uptake in Maize Roots. Plant Physiology, Vol. 141, pp. 1138-1148.
20. Mishra, V.K., Tripathi, B.D. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresourse Technology, Vol. 99, pp.7091– 7097.
21. Ma, L. Q., Angela, L., Rao, G.N. 1997. Effect of incubation and phophate rock on lead extrability and speciation in contaminated soils. Journal Environment Quality, Vol. 26, pp.801– 807.
22. Ewaise, E.A. 1997. Effects of cadmium nickel and lead on growth, chlorophyll content and proteins of weed. Biological Plantarum, Vol. 39, pp.403-410.
23. Jeliazkova, E.A., Craker, L.E. Xing, B. 2003. Seed germination of anise, caraway, and fennel in heavy metal contaminated solutions. Journal Herbs, Spices and Medicine Plants, Vol. 10, pp. 83-93.
24. Ludevid, D. Hofte, H., Himelblau, E., Chrispeels, M.J. 1992. The expression pattern of the tonoplast intrinsic protein Y-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiology, Vol.100, pp.1633 – 1639.
25. Stribley, D.P., Tinker, P.B., Snellgrove, R.C. 2006. Effect of vesicular mycorrhiza fungi on the relation of plant growth, internal phophorus concentration and phosphate analyses. European Journal of Soil Science, Vol.31, pp.655-672.
26. Li-Jin, L., Li, L., Miang-an, L., Xiao, Z., Dai-yu, Y. 2015. Cadmium accumulation characteristic emerged plant Nasturtium Officinalis. Resource and Environment in the Yangtze basin, Vol. 4, pp.1-4.
27. Duman, F., Leblebici, Z., Aksoy, A. 2009. Growth and bioaccumulation characteristics ofwatercress (Nasturtium officinale R. BR.) exposedto cadmium, cobalt and chromium. Chemistry Speciation and Bioavailability, Vol.2, pp.256-264.
28. Shin, H.W., Sidharthan, M., Young, K.S. 2002. Forest fire ash impact on micro- and macroalgae in the receiving waters of the east coast of South Korea. Mar. Pollution Bulletin, Vol.45, pp. 203-209.
29. Deng, H., Ye, Z.H., Wong, M.H. 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environment Pollution, Vol. 132, pp. 29–40.
30. Zurayk, R., Sukkariyah, B., Baalbaki, R. 2001. Common hydrophytes as bioindicators of Ni, Cr and Cd pollution. Water Air Soil Pollution, Vol.127, pp. 373– 388.