برآورد میزان مصرف سوخت و آلودگی هوای ناشی از تردد سامانه اتوبوسهای تندرو شهری با استفاده از مدلسازی عامل بنیان
الموضوعات :
رحمان نورمحمدی
1
,
سید محمدعلی خاتمی فیروزآبادی
2
,
اکبر عالم تبریز
3
,
رضا احتشام راثی
4
,
امیر دانشور
5
1 - دانشجوی دکتری، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - استاد، گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران و استاد مدعو، گروه مدیریت صنعتی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران. *(مسئول مکاتبات).
3 - استاد،گروه مدیریت صنعتی و فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران.
4 - استادیار، گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.
5 - استادیار،گروه مدیریت فناوری اطلاعات، واحد الکترونیکی، دانشگاه آزاد اسلامی، تهران، ایران.
تاريخ الإرسال : 14 الإثنين , شعبان, 1444
تاريخ التأكيد : 13 الأربعاء , شوال, 1444
تاريخ الإصدار : 07 الأربعاء , صفر, 1445
الکلمات المفتاحية:
اتوبوس های تندرو,
گازوئیل,
نت لوگو,
مدل سازی عامل بنیان,
آلودگی هوا,
ملخص المقالة :
زمینه و هدف: افزایش ترافیک مشکلات زیادی را در کلان شهرها به همراه داشته که مهمترین آن آلودگی هوا و افزایش مصرف بی رویه سوخت است، از اقداماتی که می توان انجام داد، توجه به حمل و نقل عمومی به ویژه سامانه اتوبوسهای تندرو است، زیرا علاوه بر کاهش هزینههای اجتماعی میتواند در کاهش آلودگی هوا نیز بسیار موثر باشد. هدف اصلی این تحقیق، مطالعه میزان مصرف سوخت و میزان انتشار انواع آلایندههای هوا شامل گازهـای CO2، CH4 ، N2O در سناریوهای مختلف سامانه اتوبوس های تندرو است.
روش بررسی: از آنجـا کـه پدیدههای ترافیکی و ازدحام دارای خصوصیاتی از جمله پیچیدگی و پویـایی هستند، مدلسازی آنها با مدلهای ریاضی معمول بسیار دشوار و بعضاً غیرممکن است. به همین منظـور، مـیتـوان از تکنولوژیهای مبتنی بر عامل که دارای همخـوانی بـالایی بـا ایـن خصوصـیات هستند، بهـره گرفـت. در این تحقیق با استفاده از مدلسازی عاملبنیان سیستم عملکرد اتوبوسهای تندرو شهری (BRT)، میزان مصرف سوخت و همچنین میزان تولید آلایندههای هوا برآورد شده است. تأکید این پژوهش بر این مطلب است که برای کنترل مصرف سوخت و بهبود عوامل آلاینده میبایست چه تغییراتی در پارامترهای موثر شامل سرعت اتوبوسها، زمان توقف اتوبوسها در ایستگاهها و زمانبندی اعزام اتوبوسها ایجاد شود. در این تحقیق، از نرم افزار پایۀ NetLogo برای کدنویسی مدل و اجرای شبیه سازی آن استفاده شده و سه سناریو متفاوت در خط یک اتوبوس های تندرو شهر تهران در نظر گرفته شده است.
یافته ها: پس از تحلیل و مقایسۀ وضعیتهای مختلف، پیشنهادهایی برای کاهش مصرف سوخت و آلایندههای هوا ارائه شده است، از جمله این که با تغییرات جزئی در پارامترهای زمان توقف اتوبوسها در ایستگاهها و همچنین تغییرات در زمان اعزام اتوبوسها از پایانه می توان نسبت به بهبود وضعیت میزان مصرف سوخت و آلودگی هوا اقدام نمود. نتایج حاکی از آن است که یکی از وضعیت های بهبود یافته مربوط به وضعیت افزایش پارامتر زمان اعزام اتوبوس ها و در سناریو پل بوده که میزان انتشار گازهـای CO2، CH4، N2O به ترتیب برابر 6/1458 و 122/1 و 781/11 در یک ساعت زمان پیک مسافری می باشد.
بحث و نتیجه گیری: نتایج حاصل شده حاکی از آن است که دستیابی به اهداف کاهش مصرف سوخت و آلودگی هوا در وضعیت سناریوی پل نسبت به دو سناریوی دیگر مناسبتر است. همچنین در صورت امکان در تقاطعهای دارای ترافیک بالا نسبت به ایجاد پل اقدام گردد و یا ایجاد سامانه چراغهای راهنمایی هوشمند نیز در دستور کار باشد.
المصادر:
Barca, S. Energy, property, and the industrial revolution narrative. Ecol. Econ. 2011, 70, 1309–1315. [CrossRef]
Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [CrossRef] [PubMed]
Moya, Diego et al (2021), Agent-based scenarios comparison for assessing fuel-switching investment in long-term energy transitions of the India’s industry sector, Applied Energy, 274, 1-26.
Asgari M. Potential to reduce pollutant emissions from personal rides In big cities with cars with new technologies Master’s (thesis). Iran. Faculty of Civil Engineering Sharif University; 2011. (In Persian)
Ashrafi Kh., Shafipour M., Kamalan H. Estimating temporal and seasonal variation of ventilation coefficients, International Journal of Environmental Research,2009.
USEPA (2009). Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act. Available at: www.epa.gov/climatechange/index.html.
Zegras, P.C. (2007). As if Kyoto Mattered: The Clean Development Mechanism and Transportation. Energy Policy, 35: 5136– 5150.
USEPA (2008). Climate Leaders, Greenhouse Gas Inventory Protocol Core Module Guidance. Direct Emissions from Mobile Combustion Sources. Available at: www.epa.gov/Climate Leaders Office of Air and Radiation.
Golzar Shahri, Ahmed et al. (2014), improving the performance of the bus network in Yazd city with the aim of improving service quality and reducing costs, 15th International Conference on Transportation and Traffic Engineering, Tehran. (In Persian)
Etisam, Hadi, Rouhi, Amir (2014), investigating the causes of traffic congestion on rainy and snowy days and providing solutions to reduce it, 15th International Conference on Transportation and Traffic Engineering, Tehran, Traffic Transportation Organization. (In Persian)
Sachs J, Meng Y, Giarola S, Hawkes A. An agent-based model for energy investment decisions in the residential sector. Energy 2019;172: 752–68
Motsadi Zarandi, Saeed et al. (2012), Investigation of the effect of the high-speed bus system on the emission of greenhouse gases in Tehran, Environmental Sciences, 9 (4), 1-12. (In Persian)
Ehsani, Mehrsa and Ahmadi, Abbas and Fadaei, Daoud, (2012), Modeling vehicle fuel consumption and carbon dioxide emissions in road transport with an emphasis on the effect of renewable energies, the third international conference on new approaches to energy conservation, Tehran. (In Persian)
Rezaei Aghamirlou, Mohammadreza et al. (2013), measuring the effect of the implementation of the high-speed bus system on air pollution, Traffic Management Studies, 23, 45-70. (In Persian)
Nasrollahi, Zahra, Poshdozbashi, Hanieh (2015), estimation of air pollution caused by public transport vehicles in the city of Yazd, Environmental Science and Technology, 22 (2), 15-29. (In Persian)
Ashrafi, Khosrow et al. (2017), investigating the effects of the expansion of high-speed city buses on traffic and air pollution using the EMME/2 model f) IVE case study: line number 10 of the return route of Azad University to Azadi Square), research in environmental health, 4 (3), 165-184. (In Persian)
Kamal Nasir, Mostofa (2014), Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems, Hindawi Publishing Corporation e Scientific World Journal, 1-13.
Mizdrak, Anja et al, (2019), Potential of active transport to improve health, reduce healthcare costs, and reduce greenhouse gas emissions: A modelling study, PLOS ONE, 1-17.
Wen, Hung-Ta et al (2021), Features Importance Analysis of Diesel Vehicles’ NOx and CO2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model, International Journal of Environmental Research and Public Health, 18, 1-28.
Duan, Linfeng et al (2021), Impacts of reducing air pollutants and CO2 emissions in urban road transport through 2035 in Chongqing, China, Environmental Science and Ecotechnology, 8, 1-12.
Filigrana, Paola, et al (2022), Health benefits from cleaner vehicles and increased active transportation in Seattle, Washington, Journal of Exposure Science & Environmental Epidemiology, 32:538–544.
Bonabeau E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl 3): 7280-7287.
Homayounfar, M., Bagher-Salimi, S., Nahavandi, B., Izadi Sheijani, K. (2018). Agentbased Simulation of National Oil Products Distribution Company’s Supply Network in the Framework of a Complex Adaptive System in Order to Achieve an Optimal Inventory Level. Industrial Management Journal, 10(4), 607-630.
Azar, Adel, et al (2021), Modeling Steel Supply Chain and Estimating Its Consumption through ABM Methodology, Industrial Management Perspective, 11( 41), pp, 33-51.
Rand, W., Rust, R. T., & Kim, M. (2018). Complex systems: marketing’s new frontier. AMS Review, 8(3–4), 111–127.
Sargent, R. G. (2007). Verification and validation of simulation models. Simulation conference, Washington, DC, USA.
Bezazan Fatemeh, Khosravani, Neda (2016), measuring the amount of carbon dioxide emissions by different production sectors and households due to energy consumption in Iran (environmental data-output approach), environmental economics and natural resources bi-quarterly, first year, number 1, pages 1-25. (In Persian)
National Climate Change Office (2010). Iran Second National Communication to UNFCC, December 2010, Department of Environment.
_||_
Barca, S. Energy, property, and the industrial revolution narrative. Ecol. Econ. 2011, 70, 1309–1315. [CrossRef]
Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [CrossRef] [PubMed]
Moya, Diego et al (2021), Agent-based scenarios comparison for assessing fuel-switching investment in long-term energy transitions of the India’s industry sector, Applied Energy, 274, 1-26.
Asgari M. Potential to reduce pollutant emissions from personal rides In big cities with cars with new technologies Master’s (thesis). Iran. Faculty of Civil Engineering Sharif University; 2011. (In Persian)
Ashrafi Kh., Shafipour M., Kamalan H. Estimating temporal and seasonal variation of ventilation coefficients, International Journal of Environmental Research,2009.
USEPA (2009). Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act. Available at: www.epa.gov/climatechange/index.html.
Zegras, P.C. (2007). As if Kyoto Mattered: The Clean Development Mechanism and Transportation. Energy Policy, 35: 5136– 5150.
USEPA (2008). Climate Leaders, Greenhouse Gas Inventory Protocol Core Module Guidance. Direct Emissions from Mobile Combustion Sources. Available at: www.epa.gov/Climate Leaders Office of Air and Radiation.
Golzar Shahri, Ahmed et al. (2014), improving the performance of the bus network in Yazd city with the aim of improving service quality and reducing costs, 15th International Conference on Transportation and Traffic Engineering, Tehran. (In Persian)
Etisam, Hadi, Rouhi, Amir (2014), investigating the causes of traffic congestion on rainy and snowy days and providing solutions to reduce it, 15th International Conference on Transportation and Traffic Engineering, Tehran, Traffic Transportation Organization. (In Persian)
Sachs J, Meng Y, Giarola S, Hawkes A. An agent-based model for energy investment decisions in the residential sector. Energy 2019;172: 752–68
Motsadi Zarandi, Saeed et al. (2012), Investigation of the effect of the high-speed bus system on the emission of greenhouse gases in Tehran, Environmental Sciences, 9 (4), 1-12. (In Persian)
Ehsani, Mehrsa and Ahmadi, Abbas and Fadaei, Daoud, (2012), Modeling vehicle fuel consumption and carbon dioxide emissions in road transport with an emphasis on the effect of renewable energies, the third international conference on new approaches to energy conservation, Tehran. (In Persian)
Rezaei Aghamirlou, Mohammadreza et al. (2013), measuring the effect of the implementation of the high-speed bus system on air pollution, Traffic Management Studies, 23, 45-70. (In Persian)
Nasrollahi, Zahra, Poshdozbashi, Hanieh (2015), estimation of air pollution caused by public transport vehicles in the city of Yazd, Environmental Science and Technology, 22 (2), 15-29. (In Persian)
Ashrafi, Khosrow et al. (2017), investigating the effects of the expansion of high-speed city buses on traffic and air pollution using the EMME/2 model f) IVE case study: line number 10 of the return route of Azad University to Azadi Square), research in environmental health, 4 (3), 165-184. (In Persian)
Kamal Nasir, Mostofa (2014), Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems, Hindawi Publishing Corporation e Scientific World Journal, 1-13.
Mizdrak, Anja et al, (2019), Potential of active transport to improve health, reduce healthcare costs, and reduce greenhouse gas emissions: A modelling study, PLOS ONE, 1-17.
Wen, Hung-Ta et al (2021), Features Importance Analysis of Diesel Vehicles’ NOx and CO2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model, International Journal of Environmental Research and Public Health, 18, 1-28.
Duan, Linfeng et al (2021), Impacts of reducing air pollutants and CO2 emissions in urban road transport through 2035 in Chongqing, China, Environmental Science and Ecotechnology, 8, 1-12.
Filigrana, Paola, et al (2022), Health benefits from cleaner vehicles and increased active transportation in Seattle, Washington, Journal of Exposure Science & Environmental Epidemiology, 32:538–544.
Bonabeau E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl 3): 7280-7287.
Homayounfar, M., Bagher-Salimi, S., Nahavandi, B., Izadi Sheijani, K. (2018). Agentbased Simulation of National Oil Products Distribution Company’s Supply Network in the Framework of a Complex Adaptive System in Order to Achieve an Optimal Inventory Level. Industrial Management Journal, 10(4), 607-630.
Azar, Adel, et al (2021), Modeling Steel Supply Chain and Estimating Its Consumption through ABM Methodology, Industrial Management Perspective, 11( 41), pp, 33-51.
Rand, W., Rust, R. T., & Kim, M. (2018). Complex systems: marketing’s new frontier. AMS Review, 8(3–4), 111–127.
Sargent, R. G. (2007). Verification and validation of simulation models. Simulation conference, Washington, DC, USA.
Bezazan Fatemeh, Khosravani, Neda (2016), measuring the amount of carbon dioxide emissions by different production sectors and households due to energy consumption in Iran (environmental data-output approach), environmental economics and natural resources bi-quarterly, first year, number 1, pages 1-25. (In Persian)
National Climate Change Office (2010). Iran Second National Communication to UNFCC, December 2010, Department of Environment.