توسعه مدل های تلفیقی بردار پشتیبان فراابتکاری و تجزیه محور در پیش بینی تبخیر از مخزن سد (مطالعه موردی: سد دز)
الموضوعات :رضا فرزاد 1 , احمد شرافتی 2 , فرشاد احمدی 3 , سید عباس حسینی 4
1 - گروه عمران، واحد علوم و تحقيقات، دانشگاه آزاد اسلامي، تهران، ايران.
2 - گروه عمران، واحد علوم و تحقيقات، دانشگاه آزاد اسلامي، تهران، ايران.
3 - گروه هيدرولوژي و منابع آب، دانشگاه شهيد چمران اهواز، اهواز، ايران.
4 - گروه عمران، واحد علوم و تحقيقات، دانشگاه آزاد اسلامي، تهران، ايران.
الکلمات المفتاحية: پيش بيني تبخير, سد دز , مدل فراابتکاري, تابع موجک, مدل SVR,
ملخص المقالة :
مقدمه و هدف پژوهش: تبخير از درياچه و مخازن سدها و همچنين خاک، يکي از مهم ترين فرآيندها در مهندسي هيدرولوژيکي محسوب ميشود. پيشبيني دقيق تبخير يکي از فرآيندهاي ضروري براي مديريت صحيح و کارآمد مخازن، منابع آب، پايداري حوضه و فعاليتهاي کشاورزي ميباشد. تبخير بطور کلي تحت تاثير فرآيند آب و هوايي غيرخطي، غير ثابت و تصادفي است. چنين عواملي بهوضوح مانع از راه اندازي مدلهاي پيشبيني دقيق ميشود. تبخير، فرآيندي طبيعي است که بر پايه تامين انرژي و تبادل هوا انجام ميشود و طي اين فرآيند مولکولها و اتمها انرژي لازم براي خارج شدن از فاز سيال و وارد شدن به فاز گاز را پيدا ميکنند. از طرفي تغييرات اقليمي ميتواند بر پارامتر تبخير تاثيرگذار باشند به همين منظور پيشبيني تبخير از مخازن سدها اهميت وافري در بحث مديريت منابع آب دارد.
روش ها: در اين تحقيق با استفاده از مدلهاي SVR-ABC، Wavelet-SVR ، SVM با استفاده از 6 تابع موجک به پيشبيني تبخير از مخزن سد دز در استان خوزستان، ايران پرداخته شده است. سري دادهها از سال 1396-1350 به مدت 46 سال متعلق به ايستگاه هواشناسي سد دز در ايران ميباشند. همچنين در اين تحقيق از پارامترهاي هواشناسي بارش، حداکثر درجه حرارت، حداقل درجه حرارت، ميانگين درجه حرارت، حداکثر مطلق درجه حرارت و حداقل مطلق درجه حرارت استفاده شده است و بر اساس نتايج آنروپي شانون 5 پارامتر Tmax، Tmin، Tave، Tamax، Taminبه عنوان تاثيرگذارترين پارامترها جهت سناريوبندي در 5 گروه به ترتيب با 1پارامتر، 2 پارامتر، 3 پارامتر، 4 پارامتر و 5 پارامتر تقسيمبندي ميشوند که مجموعا 28 سناريو مورد مطالعه قرار ميگيرند.
يافته ها: نتايج مدلسازيها بر اساس شاخصهاي ارزيابي RMSE ، MAE و WI نشان ميدهد که عملکرد مدل فراابتکاري SVR-ABC با مقدار RMSE برابر 219/82 ،MAE برابر 977/53 و WI برابر 815/0 بهتر از مدل Wavelet-SVR با RMSE برابر 637/93، MAE برابر 360/69 و WI برابر 762/0 ميباشد. همچنين بر اساس نمودار ويولني مدل منفرد SVR با وروديهاي تناوبي و غير تناوبي تبخير ماهانه را کمتر از مقادير مشاهداتي برآورد نموده و در نتيجه ميانگين دادهها در مقايسه با مقادير مشاهداتي کاهش يافته است.
نتيجه گيري: همچنين نتايج 6 تابع موجک استفاده شده در تحقيق نشان ميدهد که مدل تجزيه محور Wavelet-SVR با تابع موجک haar با سطح تجزيه 1 با شاخصهاي ارزيابي RMSE، MAE و WI به ترتيب 637/93 ميليمتر بر ماه، 360/69 ميليمتر در ماه و 762/0 مناسبترين نتيجه را در بين توابع موجک 6 گانه نشان ميدهد.
Adnan, R. M., Malik, A., Kumar, A., Parmar, K. S., & Kisi, O. (2019). Pan evaporation modeling by three different neuro-fuzzy intelligent systems using climatic inputs. Arabian Journal of Geosciences, 12(20), 1–14. https://doi.org/10.1007/S12517-019-4781-6/METRICS
Ahmadi, F., & Maddah, M. A. (2021). Development of Wavelet-Kstar Algorithm Hybrid Model for the Monthly Precipitation Prediction ( Case Study : Synoptic Station of Ahvaz https://doi.org/10.22059/ijswr.2021.314110.668808
Allawi, M. F., & El-Shafie, A. (2016). Utilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoir. Water Resources Management, 30, 4773–4788.
Ansari, M., & Akhoondzadeh, M. (2020). Mapping water salinity using Landsat-8 OLI satellite images (Case study: Karun basin located in Iran). Advances in Space Research, 65(5), 1490–1502.
Ashrafzadeh, A., Ghorbani, M. A., Biazar, S. M., & Yaseen, Z. M. (2019). Evaporation process modelling over northern Iran: application of an integrative data-intelligence model with the krill herd optimization algorithm. Hydrological Sciences Journal, 64(15), 1843–1856.
Ashrafzadeh, A., Malik, A., Jothiprakash, V., Ghorbani, M. A., & Biazar, S. M. (2020). Estimation of daily pan evaporation using neural networks and meta-heuristic approaches. ISH Journal of Hydraulic Engineering, 26(4), 421–429.
Baek, J.-Y., Cho, J.-W., & Kim, S.-H. (2016). Effect of water vapor on evaporation and melt crystallization of mold fluxes. Metallurgical and Materials Transactions B, 47, 32–36.
Baier, W., & Robertson, G. W. (1965). Estimation of latent evaporation from simple weather observations. Canadian Journal of Plant Science, 45(3), 276–284.
Bhattarai, A., Qadir, D., Sunusi, A. M., Getachew, B., & Rahman, A. (2023). Dynamic Sliding Window-Based Long Short-Term Memory Model Development for Pan Evaporation Forecasting. 37–54. https://doi.org/10.51526/kbes.2023.4.1.37-54
Boers, T. M., De Graaf, M., Feddes, R. A., & Ben-Asher, J. (1986). A linear regression model combined with a soil water balance model to design micro-catchments for water harvesting in arid zones. Agricultural Water Management, 11(3–4), 187–206.
Chen, C. A., Lin, T. F., Yan, W. M., & Amani, M. (2018). Time periodic evaporation heat transfer of R-134a in a narrow annular duct due to mass flow rate oscillation. International Journal of Heat and Mass Transfer, 118, 154–164. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.114
Chen, Y., Chen, W., Janizadeh, S., Bhunia, G. S., Bera, A., Pham, Q. B., Linh, N. T. T., Balogun, A.-L., & Wang, X. (2022). Deep learning and boosting framework for piping erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region. Geocarto International, 37(16), 4628–4654.
Cortes C, V. V. (1995). Support-vector networks. Mach Learn.
Costache, R., Tin, T. T., Arabameri, A., Crăciun, A., Ajin, R. S., Costache, I., Islam, A. R. M. T., Abba, S. I., Sahana, M., & Avand, M. (2022). Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. Journal of Hydrology, 609, 127747.
Deo, R. C., Wen, X., & Qi, F. (2016). A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Applied Energy, 168, 568–593. https://doi.org/10.1016/j.apenergy.2016.01.130
Eames, I. W., Marr, N. J., & Sabir, H. (1997). The evaporation coefficient of water: a review. International Journal of Heat and Mass Transfer, 40(12), 2963–2973.
El Bilali, A., Abdeslam, T., Ayoub, N., Lamane, H., Ezzaouini, M. A., & Elbeltagi, A. (2023). An interpretable machine learning approach based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation. Journal of Environmental Management, 327(November 2022). https://doi.org/10.1016/j.jenvman.2022.116890
Elbeltagi, A., Al-Mukhtar, M., Kushwaha, N. L., Al-Ansari, N., & Vishwakarma, D. K. (2023). Forecasting monthly pan evaporation using hybrid additive regression and data-driven models in a semi-arid environment. Applied Water Science, 13(2). https://doi.org/10.1007/s13201-022-01846-6
Emadi, A. R., Zamanzad-Ghavidel, S., Zareie, S., & Rashid-Niaghi, A. (2022). Modeling Of Monthly Evaporation Using Single and Hybrid-Wavelet Data-Driven Methods in Basins of Iran with Climate Variety. Irrigation and Water Engineering, 12(4), 354–373.
Fa’al, F., Ghafouri, H. R., & Ashrafi, S. M. (2020). Predicting Saltwater Intrusion into Coastal Aquifers Using Support Vector Regression Surrogate Models. Journal of Water and Wastewater, 31(2), 118–129.
Fan, J., Chen, B., Wu, L., Zhang, F., Lu, X., & Xiang, Y. (2018). Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy, 144, 903–914. https://doi.org/10.1016/j.energy.2017.12.091
Fan, J., Wu, L., Zhang, F., Xiang, Y., & Zheng, J. (2016). Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. Journal of Hydrology, 542, 923–937.
Fang, W., Huang, S., Ren, K., Huang, Q., Huang, G., Cheng, G., & Li, K. (2019). Examining the applicability of different sampling techniques in the development of decomposition-based streamflow forecasting models. Journal of Hydrology, 568, 534–550.
Fattahi, H., & Babanouri, N. (2017). Applying Optimized Support Vector Regression Models for Prediction of Tunnel Boring Machine Performance. Geotechnical and Geological Engineering, 35(5), 2205–2217. https://doi.org/10.1007/s10706-017-0238-4
Ferreira, L. B., da Cunha, F. F., de Oliveira, R. A., & Fernandes Filho, E. I. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. Journal of Hydrology, 572, 556–570.
Ghaemi, A., Rezaie-Balf, M., Adamowski, J., Kisi, O., & Quilty, J. (2019). On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. Agricultural and Forest Meteorology, 278, 107647. https://doi.org/https://doi.org/10.1016/j.agrformet.2019.107647
Ghomeshi, M., Zayrie, M. R., & Hasounizadeh, H. (2020). Analysisof turbidity currents measured in Dez Reservoir. Journal of Civil and Environmental Engineering, 94(1), 77–88.
Golabi, M. R., Eslamian, S., Geshnigani, F. S., & Farzi, S. (2022). Wavelet decomposition based on Gaussian process regression and multiple linear regression: Monthly reservoir evaporation prediction. Handbook of HydroInformatics: Volume II: Advanced Machine Learning Techniques, 315–325. https://doi.org/10.1016/B978-0-12-821961-4.00013-0
Golabi, M. R., Eslamian, S., Geshnigani, F. S., & Farzi, S. (2023). Chapter 20 - Wavelet decomposition based on Gaussian process regression and multiple linear regression: Monthly reservoir evaporation prediction (S. Eslamian & F. B. T.-H. of H. Eslamian (eds.); pp. 315–325). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821961-4.00013-0
Goltz, S. M., Tanner, C. B., Thurtell, G. W., & Jones, F. E. (1970). Evaporation measurements by an eddy correlation method. Water Resources Research, 6(2), 440–446.
Gong, D., Hao, W., Gao, L., Feng, Y., & Cui, N. (2021). Extreme learning machine for reference crop evapotranspiration estimation: Model optimization and spatiotemporal assessment across different climates in China. Computers and Electronics in Agriculture, 187, 106294.
Goyal, M. K., Bharti, B., Quilty, J., Adamowski, J., & Pandey, A. (2014). Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Systems with Applications, 41(11), 5267–5276.
Hassan, S., Rafi, M., & Shaikh, M. S. (2011). Comparing SVM and Naïve Bayes classifiers for text categorization with Wikitology as knowledge enrichment. Proceedings of the 14th IEEE International Multitopic Conference 2011, INMIC 2011, 31–34. https://doi.org/10.1109/INMIC.2011.6151495
Helfer, F., Lemckert, C., & Zhang, H. (2012). Impacts of climate change on temperature and evaporation from a large reservoir in Australia. Journal of Hydrology, 475, 365–378. https://doi.org/10.1016/J.JHYDROL.2012.10.008
Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10(11), 1543.
Jayasinghe, W. J. M. L. P., Deo, R. C., Ghahramani, A., Ghimire, S., & Raj, N. (2022). Development and evaluation of hybrid deep learning long short-term memory network model for pan evaporation estimation trained with satellite and ground-based data. Journal of Hydrology, 607, 127534.
Jhajharia, D., Shrivastava, S. K., Sarkar, D., & Sarkar, S. (2009). Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agricultural and Forest Meteorology, 149(5), 763–770.
Jones, F. E. (2018). Evaporation of water with emphasis on applications and measurements. CRC Press.
Karaboga, D., & Akay, B. B. (2005). An artificial bee colony (abc) algorithm on training artificial neural networks (Technical Report TR06): Erciyes University, Engineering Faculty. Computer Engineering Department.
Kavousi-Fard, A., Samet, H., & Marzbani, F. (2014). A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting. Expert Systems with Applications, 41(13), 6047–6056. https://doi.org/10.1016/j.eswa.2014.03.053
Keshtegar, B., Heddam, S., Sebbar, A., Zhu, S.-P., & Trung, N.-T. (2019). SVR-RSM: a hybrid heuristic method for modeling monthly pan evaporation. Environmental Science and Pollution Research, 26(35), 35807–35826. https://doi.org/10.1007/s11356-019-06596-8
Khan, N., Shahid, S., Juneng, L., Ahmed, K., Ismail, T., & Nawaz, N. (2019). Prediction of heat waves in Pakistan using quantile regression forests. Atmospheric Research, 221, 1–11.
Khoshtinat, S., Aminnejad, B., Hassanzadeh, Y., & Ahmadi, H. (2020). Potential Detection of Groundwater Resources of Sero Plain: Applications of Shannon’s Entropy and Frequency Ratio (FR) Models. Irrigation Sciences and Engineering, 43(2), 123–137.
Kim, S., Shiri, J., & Kisi, O. (2012). Pan evaporation modeling using neural computing approach for different climatic zones. Water Resources Management, 26, 3231–3249.
Kisi, O. (2015a). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 528, 312–320. https://doi.org/10.1016/j.jhydrol.2015.06.052
Kisi, O. (2015b). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 528, 312–320.
Kumar, P., & Singh, A. K. (2022). A comparison between MLR, MARS, SVR and RF techniques: hydrological time-series modeling. Journal of Human, Earth, and Future, 3(1), 90–98.
Kushwaha, N. L., Bhardwaj, A., & Verma, V. K. (2016). Hydrologic response of Takarla-Ballowal watershed in Shivalik foot-hills based on morphometric analysis using remote sensing and GIS. J Indian Water Resour Soc, 36(1), 17–25.
Kushwaha, N. L., Rajput, J., Elbeltagi, A., Elnaggar, A. Y., Sena, D. R., Vishwakarma, D. K., Mani, I., & Hussein, E. E. (2021). Data intelligence model and meta-heuristic algorithms-based pan evaporation modelling in two different agro-climatic zones: a case study from Northern India. Atmosphere, 12(12), 1654.
Lang, A. R. G., McNaughton, K. G., Fazu, C., Bradley, E. F., & Ohtaki, E. (1983). Inequality of eddy transfer coefficients for vertical transport of sensible and latent heats during advective inversions. Boundary-Layer Meteorology, 25, 25–41.
Liang, Y., Reyes, M. L., & Lee, J. D. (2007). Real-time detection of driver cognitive distraction using support vector machines. IEEE Transactions on Intelligent Transportation Systems, 8(2), 340–350. https://doi.org/10.1109/TITS.2007.895298
Liang, Z., Liu, Y., Hu, H., Li, H., Ma, Y., & Khan, M. Y. A. (2021). Combined Wavelet Transform With Long Short-Term Memory Neural Network for Water Table Depth Prediction in Baoding City, North China Plain. Frontiers in Environmental Science, 9(December), 1–17. https://doi.org/10.3389/fenvs.2021.780434
Lin, Y., Wang, D., Wang, G., Qiu, J., Long, K., Du, Y., Xie, H., Wei, Z., Shangguan, W., & Dai, Y. (2021). A hybrid deep learning algorithm and its application to streamflow prediction. Journal of Hydrology, 601, 126636.
Liu, Y., Hou, G., Huang, F., Qin, H., Wang, B., & Yi, L. (2022). Directed graph deep neural network for multi-step daily streamflow forecasting. Journal of Hydrology, 607, 127515.
Lundberg, A. (1993). Evaporation of intercepted snow—review of existing and new measurement methods. Journal of Hydrology, 151(2–4), 267–290.
Malik, A., Kumar, A., Kim, S., Kashani, M. H., Karimi, V., Sharafati, A., Ghorbani, M. A., Al-Ansari, N., Salih, S. Q., & Yaseen, Z. M. (2020). Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model. Engineering Applications of Computational Fluid Mechanics, 14(1), 323–338.
Malik, A., Saggi, M. K., Rehman, S., Sajjad, H., Inyurt, S., Bhatia, A. S., Farooque, A. A., Oudah, A. Y., & Yaseen, Z. M. (2022). Deep learning versus gradient boosting machine for pan evaporation prediction. Engineering Applications of Computational Fluid Mechanics, 16(1), 570–587. https://doi.org/10.1080/19942060.2022.2027273
Malik, A., Tikhamarine, Y., Al-Ansari, N., Shahid, S., Sekhon, H. S., Pal, R. K., Rai, P., Pandey, K., Singh, P., & Elbeltagi, A. (2021). Daily pan-evaporation estimation in different agro-climatic zones using novel hybrid support vector regression optimized by Salp swarm algorithm in conjunction with gamma test. Engineering Applications of Computational Fluid Mechanics, 15(1), 1075–1094.
Masoner, J. R., Stannard, D. I., & Christenson, S. C. (2008). Differences in evaporation between a floating pan and class a pan on land 1. JAWRA Journal of the American Water Resources Association, 44(3), 552–561.
Mehdizadeh, S., Fathian, F., & Adamowski, J. F. (2019). Hybrid artificial intelligence-time series models for monthly streamflow modeling. Applied Soft Computing, 80, 873–887.
Moghaddamnia, A., Ghafari Gousheh, M., Piri, J., Amin, S., & Han, D. (2009). Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources, 32(1), 88–97. https://doi.org/10.1016/J.ADVWATRES.2008.10.005
Morton, F. I. (1990). Studies in evaporation and their lessons for the environmental sciences. Canadian Water Resources Journal, 15(3), 261–286.
Naderpour, H., Hoseini Vaez, S. R., & Malekshahi, N. (2021). Predicting the Behavior of Concrete Dams Using Artificial Neural Networks (Case study of Dez Dam). Civil Infrastructure Researches, 6(2), 123–132. https://doi.org/10.22091/cer.2021.6898.1242
Nekoeeyan, M. A., Radmanesh, F., & Ahmadi, F. (2022). Prediction of Monthly Streamflow Using Shannon Entropy and Wavelet Theory Approaches (Case study: Maroon River). Water and Irrigation Management, 12(1), 15–31.
Oliveira, L. S., & Sabourin, R. (2004). Support vector machines for handwritten numerical string recognition. Proceedings - International Workshop on Frontiers in Handwriting Recognition, IWFHR, 39–44. https://doi.org/10.1109/IWFHR.2004.99
Pammar, L., & Deka, P. C. (2017). Daily pan evaporation modeling in climatically contrasting zones with hybridization of wavelet transform and support vector machines. Paddy and Water Environment, 15(4), 711–722. https://doi.org/10.1007/s10333-016-0571-x
Patle, G. T., Chettri, M., & Jhajharia, D. (2020). Monthly pan evaporation modelling using multiple linear regression and artificial neural network techniques. Water Supply, 20(3), 800–808. https://doi.org/10.2166/WS.2019.189
Pham, Q. B., Kumar, M., Di Nunno, F., Elbeltagi, A., Granata, F., Islam, A. R. M. T., Talukdar, S., Nguyen, X. C., Ahmed, A. N., & Anh, D. T. (2022). Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural Computing and Applications, 34(13), 10751–10773.
Piri, J., Mollaeinia, M., & Mostafaie, A. (2023). Assessment of response surface method and hybrid models to predict evaporation (case study: Chahnimeh and Pishein reservoirs in Sistan and Baluchestan Province of Iran). Arabian Journal of Geosciences, 16(5). https://doi.org/10.1007/s12517-023-11330-3
Qasem, S. N., Samadianfard, S., Kheshtgar, S., Jarhan, S., Kisi, O., Shamshirband, S., & Chau, K.-W. (2019a). Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates. Engineering Applications of Computational Fluid Mechanics, 13(1), 177–187. https://doi.org/10.1080/19942060.2018.1564702
Qasem, S. N., Samadianfard, S., Kheshtgar, S., Jarhan, S., Kisi, O., Shamshirband, S., & Chau, K. W. (2019b). Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates. Http://Www.Tandfonline.Com/Action/AuthorSubmission?JournalCode=tcfm20&page=instructions, 13(1), 177–187. https://doi.org/10.1080/19942060.2018.1564702
Roustaie, S., Mokhtari, D., & Ashrafi Fini, Z. (2020). Landslide hazard zonation in Taleghan watershed using Shannon entropy index. Geography and Planning, 24(71), 125–150.
Sanikhani, H., Kisi, O., Maroufpoor, E., & Yaseen, Z. M. (2019). Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theoretical and Applied Climatology, 135, 449–462.
Sartori, E. (2000). A critical review on equations employed for the calculation of the evaporation rate from free water surfaces. Solar Energy, 68(1), 77–89.
Sayl, K. N., Muhammad, N. S., Yaseen, Z. M., & El-shafie, A. (2016). Estimation the physical variables of rainwater harvesting system using integrated GIS-based remote sensing approach. Water Resources Management, 30, 3299–3313.
Sebbar, A., Heddam, S., & Djemili, L. (2020). Kernel extreme learning machines (KELM): a new approach for modeling monthly evaporation (EP) from dams reservoirs. Https://Doi.Org/10.1080/02723646.2020.1776087, 42(4), 351–373. https://doi.org/10.1080/02723646.2020.1776087
Shafaei, M., & Kisi, O. (2016). Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models. Water Resources Management, 30(1), 79–97. https://doi.org/10.1007/s11269-015-1147-z
Shannon, C. E. (1948). A mathematical theory of communication, Bell Systems Tech. J, 27, 379–423.
Shimi, M., Najjarchi, M., Khalili, K., Hezavei, E., & Mirhoseyni, S. M. (2020). Investigation of the accuracy of linear and nonlinear time series models in modeling and forecasting of pan evaporation in IRAN. Arabian Journal of Geosciences, 13(2), 1–16. https://doi.org/10.1007/S12517-019-5031-7/METRICS
Shirgure, P. S., & Rajput, G. S. (2011). Evaporation modeling with neural networks–A Research review. Int J Res Rev Soft Intell Comput, 1(2), 37–47.
Tezel, G., & Buyukyildiz, M. (2016). Monthly evaporation forecasting using artificial neural networks and support vector machines. Theoretical and Applied Climatology, 124, 69–80.
Theil, H. (1972). Statistical decomposition analysis, vol. 14, Edited by H. Theil. Amsterdam: North-Holland Publishing Company.
Türkay, B. E., & Demren, D. (2011). Electrical load forecasting using support vector machines. ELECO 2011 - 7th International Conference on Electrical and Electronics Engineering, I–49.
Wang, L., Kisi, O., Zounemat-Kermani, M., & Li, H. (2017). Pan evaporation modeling using six different heuristic computing methods in different climates of China. Journal of Hydrology, 544, 407–427.
Wang, W., & Ding, J. (2003). Wavelet network model and its application to the prediction of hydrology. Nature and Science, 1(1), 67–71.
Wang, W., Xu, D., Chau, K., & Chen, S. (2013). Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD. Journal of Hydroinformatics, 15(4), 1377–1390.
Wu, L., Huang, G., Fan, J., Ma, X., Zhou, H., & Zeng, W. (2020). Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Computers and Electronics in Agriculture, 168, 105115.
Yang, A. L., Huang, G. H., & Qin, X. S. (2010). An integrated simulation-assessment approach for evaluating health risks of groundwater contamination under multiple uncertainties. Water Resources Management, 24, 3349–3369.
Yang, X., Yang, S., Tan, M. L., Pan, H., Zhang, H., Wang, G., He, R., & Wang, Z. (2022). Correcting the bias of daily satellite precipitation estimates in tropical regions using deep neural network. Journal of Hydrology, 608, 127656.
Yaseen, Z. M., Al-Juboori, A. M., Beyaztas, U., Al-Ansari, N., Chau, K.-W., Qi, C., Ali, M., Salih, S. Q., & Shahid, S. (2020). Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learning models. Engineering Applications of Computational Fluid Mechanics, 14(1), 70–89.
Yufeng, S., & Fengxiang, J. (2009). Landslide stability analysis based on generalized information entropy. 2009 International Conference on Environmental Science and Information Application Technology, 2, 83–85.
Zhao, L., Xia, J., Xu, C., Wang, Z., Sobkowiak, L., & Long, C. (2013). Evapotranspiration estimation methods in hydrological models. Journal of Geographical Sciences, 23, 359–369.