قابليت شاخصهاي VCADI، TSDI و TVDI در برآورد خشکسالي اراضي زراعي روستاي حصار شهرستان ماهنشان
الموضوعات :
1 - استاديار گروه جغرافيا، دانشگاه زنجان، زنجان، ايران.
الکلمات المفتاحية: شاخص خشکسالي, TVDI, TSDI, VCADI, حصار ماهنشان,
ملخص المقالة :
زمينه و هدف: امروزه شاخصهاي خشکسالي زيادي بر اساس روابط رگرسيوني شاخصهاي پوشش گياهي و دماي سطح زمين ارائه شده است. هدف از اين تحقيق، ارزيابي قابليت هر يک از شاخصهاي شاخص خشکسالي دماي پوشش گياهي (TVDI)، شاخص خشکسالي شرايط آلبدوي پوشش گياهي (VCADI) و شاخص خشکسالي اصلاح شده خاک پوشش گياهي (TSDI) در برآورد وضعيت خشکسالي در محدوده حصار ماهنشان در ساحل رودخانه قزل اوزن ميباشد.
روش پژوهش: در اين تحقيق تفاوتها و قابليتهاي 3 شاخص خشکسالي در ساحل رودخانه قزل اوزن در بخش حصار ماهنشان مورد بررسي قرار گرفت. به اين منظور از تصاوير لندست 5 و 8 در سال هاي 1990 و 2023 استفاده شد. اين شاخصها بر اساس روابط رگرسيوني بين پوشش گياهي، دماي سطح زمين و آلبدو بنا نهاده شده و بين شاخصهاي NDVI، LST، albedo و MSAVI رابطه رگرسيوني برقرار شده و شاخصهاي TVDI، TSDI و VCADI ايجاد شد. هر يک از اين شاخصها از باندهاي معيني استفاده کرده و براي برآورد دماي سطح زمين از باند 6 ماهواره لندست 5 و باند 10 ماهواره لندست 8 استفاده شد. براي ترسيم نمودار پراکنش نيز از نرم افزار origin 8 استفاده شده و معادله رگرسيوني مربوطه براورد شد. از مقادير a و b براي ترسيم نقشه شاخصها بهره گرفته شد. صحت هر يک از اين شاخصها با استفاده از ضريب کاپا مورد بررسي قرار گرفت.
يافتهها: به منظور بررسي شرايط خشکسالي منطقه مورد مطالعه به پنج طبقه با خشکي بسيار کم، کم، متوسط، زياد و بسيار زياد تقسيم ميشود و بر اساس يافتههاي به دست آمده مشاهده شد که منطقه با خشکسالي زياد در شاخص VCADI از 65/0 کيلومتر مربع در سال 1990 به 53/1 کيلومتر مربع در سال 2023 افزايش يافته و از 10 درصد مساحت منطقه به 6/23 درصد رسيده است. اين ميزان در پهنه خيلي زياد براي شاخصهاي TSDI و TVDI به ترتيب از 47/0 و 65/0 کيلومتر مربع به 7/18 و 64/23 درصد افزايش يافته است.
نتايج: نتايج نشان داد که بيشترين رابطه ضريب همبستگي پيرسون به ميزان 55/0- بين شاخص LST و NDVI برقرار بوده و در سال 2023 رخ داده است. بر اساس شاخصهاي خشکسالي مشاهده شد که در شاخص VCADI مناطق برخوردار از خشکسالي خيلي زياد از 65/0 کيلومتر مربع به 53/1 کيلومتر مربع افزايش يافته و از 10 درصد به 6/23 درصد رسيده است. در شاخصهاي TSDI و TVDI نيز نتايج مشابهي حاصل شده و به ترتيب از 10 و 26/7 درصد در سال 1990 به 64/23 و 7/18 درصد در سال 2023 رسيده است. بر اساس روابط همبستگي پيرسون و ضريب کاپا مشاهده شد که شاخص TVDI نسبت به ساير شاخصها از قابليت بهتري در بررسي خشکسالي برخوردار بوده است.
Amani, M., Salehi, B., Mahdavi, S., Masjedi, A., & Dehnavi, S. (2017). Temperature-vegetation-soil moisture dryness index (TVMDI). Remote Sens. Environ 197: 1–14.
Amazirh, A., Merlin, O., Er-Raki, S., Gao, Q.i., Rivalland, V., Malbeteau, Y., Khabba, S., & Escorihuela, M.J. (2018). Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between sentinel-1 Radar and Landsat thermal data: a study case over bare soil. Remote Sens. Environ 211: 321–337.
Bento, V.A., Gouveia, C.M., DaCamara, C.C., & Trigo, I.F. (2018). A climatological assessment of drought impact on vegetation health index. Agr. Forest Meteorol 259: 286–295.
Brown, J.F., Wardlow, B.D., Tadesse, T., Hayes, M.J., & Reed, B.C. (2008). The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation. GISci. Remote Sens 45 (1): 16–46.
Cammalleri, C., & Vogt, J.V. (2019). Non-stationarity in MODIS FAPAR time-series and its impact on operational drought detection. Int. J. Remote Sens 40 (4): 1428–1444.
Dang, C.Y., Liu, Y., Yue, H., Qian, J.X., & Zhu, R. (2020). Autumn crop yield prediction using data-driven approaches: support vector machines, random forest, and deep neural network methods. Can. J. Remote Sens., 1–20
Ghulam, A., Qin, Q., & Zhan, Z. (2007). Designing of the perpendicular drought index. Environ. Geol 52 (6): 1045–1052.
Hamzeh, S., Farahani, Z., Mahdavi, S., Chatrobgoun, O., & Gholamnia, M. (2017). Spatio-temporal monitoring of agricultural drought using remotely sensed data (Case study of Markazi province of Iran). Journal of Spatial Analysis Environmental Hazards 4 (3) :53-70 [In Persian]
Han, L., Wang, P., Yang, H., Liu, S., & Wang, J. (2006). Study on NDVI-Ts space by combining LAI and evapotranspiration. Sci. China Earth Sci 49 (7): 747–754.
Kafy, A.A. (2021). Impact of Vegetation Cover Loss on Surface Temperature and Carbon Emission in a Fastest-Growing City, Cumilla, Bangladesh, 207. Building and Environment.
Khellouk, R., Barakat, A., Jazouli, A.E., Boudhar, A., & Benabdelouahab, T. (2019). An integrated methodology for surface soil moisture estimating using remote sensing data approach. Geocarto Int 30: 1–14
Kogan, F.N. (1995). Application of vegetation index and brightness temperature for drought detection. Adv. Space Res 15 (11): 91–100.
Le Page, M., & Zribi, M. (2019). Analysis and predictability of drought in northwest Africa using optical and microwave satellite remote sensing products. Sci. Rep-uk. 9, 1466.
Liu, Y., Wu, L.X., & Ma, B.D. (2013). Remote sensing monitoring of soil Moisture on the basis of TM/ETM + spectral space. J. China Univ. Min. Technol 42: 296–301 (in Chinese).
Liu, Y., Wu, L., & Yue, H. (2015). Biparabolic NDVI-Ts space and soil moisture remote sensing in an arid and semi-arid area. Can. J. Remote Sens 41 (3: 159–169.
Liu, Y., & Yue, H. (2017). Dynamic monitoring of drought conditions in Henan Province based on LAI-Ts space. IEEE Geosci. Remote Sens. Symp 23: 5097–15010
Liu, Y., & Yue, H. (2018). The temperature vegetation dryness index (TVDI) based on bi-parabolic NDVI-Ts space and gradient-based structural similarity (GSSIM) for long-term drought assessment across Shaanxi province, China (2000–2016). Remote Sens-Basel. 10 (6), 959. https:// doi.org/10.3390/rs10060959.
Liu, Y., Dang, C., Yue, H., Lyu, C., & Dang, X. (2021). Enhanced drought detection and monitoring using sun-induced chlorophyll fluorescence over Hulun Buir Grassland, China. Sci. Total Environ. 770, 145271. https://doi.org/10.1016/j.scitotenv.2021.145271.
Lu, Y., Horton, R., Zhang, X., & Ren, T. (2018). Accounting for soil porosity improves a thermal inertia model for estimating surface soil water content. Remote Sens. Environ 212: 79–89.
Lu, Y., Tao, H., & Wu, H. (2007). Dynamic drought monitoring in Guangxi using revised temperature vegetation dryness index. Wuhan Univ. J. Natl. Sci 12 (4): 663–668.
Marzban, F., Sodoudi, S., & Preusker, R. (2018). The influence of land-cover type on the relationship between NDVI–LST and LST-Tair. Int. J. Remote Sens 39 (5): 1377–1398.
Pandey, V., & Srivastava, P. (2019). Integration of microwave and optical/ infrared derived datasets for a drought hazard inventory in a subtropical region of India. Remote Sens-Basel. 11 (4), 439. https://doi. org/10.3390/rs11040439.
Patel, N.R., Anapashsha, R., Kumar, S., Saha, S.K., & Dadhwal, V.K. (2009). Assessing potential of modis derived temperature/vegetation condition index (tvdi) to infer soil moisture status. Int. J. Remote Sens 2009 (30): 23–39.
Peng, J., Muller, J.-P., Blessing, S., Giering, R., Danne, O., Gobron, N., Kharbouche, S., Ludwig, R., Mu¨ ller, B., Leng, G., You, Q., Duan, Z., & Dadson, S. (2019). Can we use satellite-based FAPAR to detect drought? Sensors-Basel. 19 (17), 3662. https://doi.org/10.3390/s19173662.
Pickett-Heaps, C.A., Canadell, J.G., Briggs, P.R., Gobron, N., Haverd, V., Paget, M.J., Pinty, B., & Raupach, M.R. (2014). Evaluation of six satellite-derived fraction of absorbed photosynthetic active radiation (FAPAR) products across the Australian continent. Remote Sens. Environ 140: 241–256.
Pourkhosravani, M., Mehrabi, A., & Mousavi, S. (2018). Drought spatial analysis of Sirjan Basin using Remote sensing, Desert Ecosystem engineering Journal 7(20): 13-22. [In Persian]
Price, J.C. (1985). On the analysis of thermal infrared imagery: the limited utility of apparent thermal inertia. Remote Sens. Environ 18 (1): 59– 73.
Qin, H., Wang, C., Pan, F., Lin, Y., Xi, X., & Luo, S. (2017). Estimation of FPAR and FPAR profile for maize canopies using airborne Lidar. Ecol. Indic 83: 53–61.
Sandholt, I., Andersen, J., & Rasmussen, K. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of soil moisture status. Remote Sens. Environ 79: 213–224.
Sui, X.X., Qin, Q.M., Dong, H., Wang, J.L., Meng, Q.Y., & Liu, M.C. (2013). Monitoring of farmland drought based on LST-LAI spectral feature space. Spectrosc. Spect. Anal 33: 201–205
Thakur, S., Mondal, I., Bar, S., Nandi, S., Das, P., Ghosh, P.B., & De, T.K. (2020). Shoreline changes and its impact on the mangrove ecosystems of some Islands of Indian Sundarbans, North- East coast of India, J Clean Prod, 284, 124764. Elsevier.
Wang, P.X., Li, X.W., Gong, J.Y., & Song, C.H. (2001). Vegetation temperature condition index and its application for drought monitoring. In: Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001.
Wang, H., He, N., Zhao, R., & Ma, X. (2020). Soil water content monitoring using joint application of PDI and TVDI drought indices. Remote Sens. Lett 11 (5): 455–464.
Wang, W., Huang, D., Wang, X.-G., Liu, Y.-R., & Zhou, F. (2011). Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index. Hydrol. Earth Syst. Sc. 15 (5): 1699–1712.
Wigmore, O., Mark, B., Mckenzie, J., Baraer, M., & Lautz, L. (2019). Submeter mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle. Remote Sens. Environ. 222: 104–118.
Wu, Z., Lei, S., Bian, Z., Huang, J., & Zhang, Y. (2019). Study of the desertification index based on the albedo-MSAVI feature space for semi-arid steppe region. Environ. Earth. Sci. 78, 232.
Yagci, A.L., & Santanello, J.A. (2018). Estimating evapotranspiration from satellite using easily obtainable variables: a case study over the southern Great Plains, USA. IEEE J-Stars. 11 (1): 12–23.
Yildirima, T., & Asika, S. (2018). Index-based assessment of agricultural drought using remote sensing in the semi-arid region of western Turkey. J. Agr. Sci.-Tarim. Bili. 24: 510–516.
Yue, H., Liu, Y., & Qian, J. (2020). Soil moisture assessment through the SSMMI and GSSIM algorithm based on SPOT, WorldView-2, and Sentinel-2 images in the Daliuta Coal Mining Area, China. Environ. Monit. Assess. 192, 237.
Zhao, H., Li, Y.i., Chen, X., Wang, H., Yao, N., & Liu, F. (2021). Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theor. Appl. Climatol. 143 (1-2): 159–176.
Zhao, L.H., Du, P.J., Pang, Y.F., & Zhang, H.P. (2010). Monitoring drought using temperature/vegetation drought index based on remote sensing images. Bull. Soil Water Conserv. 30, 110–115
Zormand, S., Jafari, R., & Koupaei, S.S. (2017). Assessment of PDI, MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands. Nat. Hazards. 86 (2): 757–777.