بررسی رطوبت سطح خاک شهرستان اردبیل با استفاده دادههای ماهوارهای لندست 8 و سنتیل 1
الموضوعات :صیاد اصغری سراسکانرود 1 , فریبا اسنفدیاری درآباد 2 , الهام ملانوری 3 , شیوا صفری 4
1 - استاد گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
2 - استاد گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
3 - دانشجوی کارشناسی ارشد دانشگاه محقق اردبیلی اردبیل، ایران.
4 - دانشجوی کارشناسی ارشد دانشگاه محقق اردبیلی اردبیل، ایران.
الکلمات المفتاحية: رگرسیون بردارپشتیبان, دمای سطح زمین, TOTRAM, شاخص تفاضلی نرمال شده پوشش گیاهی,
ملخص المقالة :
زمینه و هدف: رطوبت سطحی خاک، متغیری مهم در چرخه آبی طبیعت بوده و میتواند تحت تأثیر عوامل مختلفی از جمله دما و مشخصات خاک قرار گیرد. استفاده از سنسوهای زمین برای اندازهگیری رطوبت خاک منجر بهصرف زمان و توزیع نامناسب نمونهها در مقیاسهای بزرگ شود بنابراین سنجشازدوری میتواند ابزار مهمی در برآورد رطوبت خاک باشد. هدف پژوهش حاضر استفاده از مدل TOTRAM با استفاده از تصاویر لندست 8 و روش SVR با استفاده از تصاویر سنتیل1 برای برآورد رطوبت خاک میباشد.روش پژوهش: شهرستان اردبیل بهعنوان مرکز استان اردبیل در شمال غرب کشور واقع است. در مطالعه حاضر برای استخراج رطوبت خاک از دو روش TOTRAM بر مبنای توزیع پیکسل در فضای LST-VI و روش SVR با استفاده از تکنیک SAR و داده سنتینل 1 استفاده شده است. جهت پیادهسازی روش TOTRAM تصاویر لندست 8 مرتبط با تاریخهای 29/4/1398 و 30/05/1398 دانلود و پس از استخراج نقشههای NDVI و LST، اقدام به بررسی همبستگی بین متغیر وابسته رطوبت و متغیرهای مستقل دما و پوشش گیاهی با استفاده از رگرسیون وزندار جغرافیایی (GWR) شده است. برای اجرای روش SVR پس از دستیابی به تصاویر سنتینل 1 مربوط به تاریخهای 31/05/1398 و 27/04/1398، دادههای رطوبت خاک محصول FLDAS و محصول 500 متری سالانه ماهواره مودیس (MCD12Q1) جهت طبقهبندی پوشش اراضی در سامانه Google Earth engine فراخوانی شدند و نقشههای مرتبط با رطوبت خاک استخراج شد. پس از استخراج نقشههای رطوبت نحوهی توزیع رطوبت با استفاده از شاخص محلی موران بررسی شده است. بر طبق تعریف این شاخص مقادیر مثبت یک برای این شاخص نشان دهندهی خوشهای بودن توزیع خواهد بود.یافتهها: بررسی نقشه رطوبت حاصل از روش SVR تمرکز رطوبت در مناطقی با حضور پوشش گیاهی و آب را نشان داد و تغییر وضعیت رطوبت از تیر به مرداد قابل مشاهده بوده است. الگوی رطوبت انعکاس الگوی بارشی را نشان داده است بهطوریکه حداکثر بارش و رطوبت در فروردین بوده و در تابستان هر دو مؤلفهی بارش و رطوبت کاهش داشتهاند. بررسی روش TOTRAM و اعمال روش GWR همبستگی کامل NDVI-LST و رطوبت را نشان داد. البته همبستگی بین LST و رطوبت با مقادیر (بتا) B و خطای استاندارد (SE) 995/0 و صفر متناسب با مرداد و 981/0 و صفر متناسب با تیرماه بیشترین همبستگی را نسبت به متغیر پوششگیاهی با پارامتر وابستهی رطوبت نشان داده است که این همبستگی در مرداد ماه با افزایش مقدار ضریب تعیین R2 به 997/0 و کاهش معنیداری NDVI به مقدار 415/0 در تیرماه بهمراتب بیشتر شده است. اعمال شاخص محلی موران با مقادیر کمتر از 0.05 برایp-value و مقادیر مثبت z و عدد نزدیک مثبت یک برای شاخص موران خوشهای بودن توزیع متغیر رطوبت را نشان داده است.نتایج: بررسی نتایج روشهای TOTRAM و SVR وابستگی وضعیت رطوبت خاک به شرایط و خوشهای بودن توزیع رطوبت را نشان داد. با توجه به ضرایب همبستگی حاصل از رگرسیون وزندار جغرافیایی همبستگی بیشتری بین متغیر دما و رطوبت بهویژه در مرداد ماه به دلیل کاهش تراکم پوشش گیاهی مشاهده شده است. بررسی نقشههای الگوریتم SVR نشان داد در مناطقی با حضور پوشش گیاهی و بخصوص تراکم آن شاهد افزایش و با افزایش دما شاهد کاهش رطوبت هستیم. همچنین هماهنگی الگویهای رطوبت الگوریتم SVR و بارش رابطه مستقیم بین رطوبت و بارش را نشان داد. با توجه به اینکه روش SVR از تصاویر سنتینل 1 و پارامترهایی نظیر شدت پراکنش رادار و طبقهبندی پوشش اراضی استفاده میکند میتوان انتظار نتایج دقیقتری از این الگوریتم داشت.
Adab, H. 2017. Estimation of the Instantaneous Soil Surface Moisture Content in Cold Seasons by using Optical and Thermal Remote Sensing Data under Clear Sky. Water and Soil Sci, 21 (2): 175-191. [in Persian]
Ambrosone, m., Matese, a., Gennaro, s., Gioli, b., Tudoroiub, m., Genesio, l., Miglietta, f., Baronti, s., Maienza, a., Ungaro, f. and Toscano, p. 2020. Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach, journal Int J Appl Earth Obs Geoinformation, 102113: 1-10.
Bagheri, K., Bagheri, M., Hosein zadeh, A. A. 2019. Estimation of soil moisture using optical, thermal and radar Remote Sensing (Case Study: South of Tehran). Iran-Watershed Management Science & Engineering, 13 (47): 63-74. [in Persian]
Behbahani, S., Noroozi Aghdam, E., Rahimi Khoob, A., Aghighi, H. 2010. Assessing Surface Soil Moisture in Arid and Semiarid Rangelands Using NDVI and Meteorological Parameters. Iran-Water Resources Research, 5(3): 39-47. [in Persian]
Bruzzone, l. and Melgani, f. 2005. Robust multiple estimator system for the analysis of biophysical parameters from remotely sensed data,” IEEE Trans. Geosci. Remote Sen, 43(1): 159–174.
Casamitjana, m., Madroñero, m., Bernal-Riobo, J. and Varga d. 2020. Soil Moisture Analysis by Means of Multispectral Images According to Land Use and Spatial Resolution on Andosols in the Colombian Andes, applied science, doi:10.3390/app10165540
Carlson, t., Gillies, t. and Perry, e. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover, journal Remote Sensing Reviews, 9: 161-173.
Fathololoumi, S., Vaezi, A., Alavipanah, S., Ghorbani, A. 2020 . Modeling the Influence of Biophysical Properties and Surface Topography on the Spatial Distribution of Soil Moisture in the Summer: A Case Study of Balikhli-Chay Watershed. Iranian journal of Ecohydrology, 7(3): 563-581. doi: 10.22059/ije.2020.299783.1307. [in Persian]
Feizizadeh, B., Didehban, K., Gholamnia, K. 2016. Extraction of Land Surface Temperature (LST) based on Landsat Satellite Images and Split Window Algorithm Study area: Mahabad Catchment. Scientific- Research Quarterly of Geographical Data (SEPEHR), 25(98): 171-181. doi: 10.22131/sepehr.2016.22145. [in Persian]
Greifeneder, f., Khamala, e., Sendabo, d., Wagner, w., Zebisch, m. and Farah h. 2018. Detection of soil moisture anomalies based on Sentinel-1, journal Physics and Chemistry of TheEarth, 1-24. https://www.researchgate.net/publication/329333037.
Harti, e., Lhissou, a., Chokmani, r., Ouzemou, k., Hassouna, j. and Bachaoui, m. 2016. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. International Journal of Applied Earth Observation and Geoinformation. 50: 64-73.
Hosseini Chamani, F., Farrokhian Firouzi, A. 2019. Pedotransfer Function (PTF) for Estimation Soil moisture using NDVI, land surface temperature (LST) and normalized moisture (NDMI) indices. Journal of Water and Soil Conservation, 26(4), 239-254. doi: 10.22069/jwsc.2019.15306.3053.[in Persian]
Khanmohammadi, F., Homaee, M., Noroozi, A. 2015. Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Water and Soil Resources Conservation, 4(2), 37-45. [in Persian]
Koohi, S., Azizian, A., Brocca, L. 2019. Calibration of VIC-3L Hydrological Model using Satellite-Based Surface Soil Moisture Datasets. Iran-Water Resources Research, 15(4): 55-67. [in Persian]
Masoodian, S., Rayatpishe, F., Keykhosravi Kiani, M. 2014. Introducing the TRMM and Asfezariprecipitation database: A comparative study. Iranian Journal of Geophysics, 8(4) :31-51. [in Persian]
McNally, a., Arsenault, k., Kumar, s., Shukla, s., Peterson, p., Wang, s., Funk, c., Peters-Lidard, c. and Verdin, v. 2017. Data Descriptor: A land data assimilation system for sub-Saharan Africa food and water security applications, SCIENTIFIC DATA. DOI: 10.1038/sdata.2017.12.
Mobasheri, m. and Amani, m. 2016. Soil moisture content assessment based on Landsat 8 red, near-infrared, and thermal channels, Journal. Appl. Remote Sens, 10(2): 1-15.
Nadian, M., Mirzaei, R., Soltani Mohammadi, S. 2018. Application of Moran'sI Autocorrelation in Spatial-Temporal Analysis of PM2.5 Pollutant (A case Study: Tehran City). Journal of Environmental Health Engineering, 5 (3) :197-213. [in Persian]
Pandey, r., Goswami, s., Sarup, j. and Matin sh. 2020. The thermal–optical trapezoid model‑based soil moisture estimation using Landsat‑8 data, journal Modeling Earth Systems and Environment, 1-9. https://doi.org/10.1007/s40808-020-00975-8.
Pasolli, l., Notarnicola, c., Bertoldi, g., Bruzzone, l., Remelgado, r., Greifeneder, f., Niedrist, g., Chiesa, s., Tappeiner, u. and Zebisch m. 2019. Estimation of Soil Moisture in Mountain Areas Using SVR Technique Applied to Multiscale Active Radar Images at C-Band, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1): 261-283.
Peng, w.,Wang J., Zhang, j. and Zhang y. 2020. Soil moisture estimation in the transition zone from the Chengdu Plain region to the Longmen Mountains by field measurements and LANDSAT 8 OLI/TIRS-derived indices, Arabian Journal of Geosciences. 1-15, https://doi.org/10.1007/s12517-020-5152-z.
Prashant, K. S. George, P. P. Yann, H. K. 2016. Satellite Soil Moisture Retrieval Techniques and Applications, 411 pp.
Ranjbar, S., Akhoondzadeh, M. 2020. Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images. Journal of Geospatial Information Technology, 7 (4) :215-232. [in Persian]
Sari Sarraf, B., Naghizadeh, H., Rasouly, A., Jahanbakhsh, S., Babaeyan, I. 2019. Modeling and spatial analysis of snow depth in Northern Iran based on database from European Centre for Medium-Range Weather Forecasts (ECMWF). Physical Geography Research Quarterly, 51(4): 651-671. doi: 10.22059/jphgr.2019.268047.1007289. [in Persian]
Sadeghi, m., Babaeian, e., Tuller, m. and Jones, s. 2017. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations, Journal Remote Sensing of Environment http://dx.doi.org/10.1016/j.rse.2017.05.041 t, 52-68.
Sheikh, h., Parizadi, t., Rezaei, m., Sajadi, m. 2012. Analysis and determination of physical form in Isfahan using modeling and Moran, Urban planning, 3(9): 117-174. [in Persian]
Shafian, s. and maas, s. 2015. Improvement of the Trapezoid Method Using Raw Landsat Image Digital Count Data for Soil Moisture Estimation in the Texas (USA) High Plains, Sensors, doi:10.3390/s150101925, 1925-1944.
SUTARIYA, s., HIRAPARA, a., MEHERBANALI, m., TIWARI, m., SINGH, v. and KALUBARME, m. 2021. Soil Moisture Estimation using Sentinel-1 SAR data and Land Surface Temperature in Panchmahal district, Gujarat State, 8(1): 2148-9173.
Yousefzadeh, A., Zeynali, B., Valizadeh Kamran, K., Asghari Sarskanrood, S. 2019. The Estimation of Soil Moisture Using the New Visible Trapezoidal Model for Simineh Basin Using Images of Landsat 8 Satellite. Hydrogeomorphology, 6(18): 181-205. [in Persian]
Yadav, s., Singh, p., Pal Singh Jadaun, s., Kumar, n. and Upadhyay, r. 2019. SOIL moisture analysis of lalitpur district uttar pradesh india using landsat and sentinel data The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3(6): 1-7.
_||_Adab, H. 2017. Estimation of the Instantaneous Soil Surface Moisture Content in Cold Seasons by using Optical and Thermal Remote Sensing Data under Clear Sky. Water and Soil Sci, 21 (2): 175-191. [in Persian]
Ambrosone, m., Matese, a., Gennaro, s., Gioli, b., Tudoroiub, m., Genesio, l., Miglietta, f., Baronti, s., Maienza, a., Ungaro, f. and Toscano, p. 2020. Retrieving soil moisture in rainfed and irrigated fields using Sentinel-2 observations and a modified OPTRAM approach, journal Int J Appl Earth Obs Geoinformation, 102113: 1-10.
Bagheri, K., Bagheri, M., Hosein zadeh, A. A. 2019. Estimation of soil moisture using optical, thermal and radar Remote Sensing (Case Study: South of Tehran). Iran-Watershed Management Science & Engineering, 13 (47): 63-74. [in Persian]
Behbahani, S., Noroozi Aghdam, E., Rahimi Khoob, A., Aghighi, H. 2010. Assessing Surface Soil Moisture in Arid and Semiarid Rangelands Using NDVI and Meteorological Parameters. Iran-Water Resources Research, 5(3): 39-47. [in Persian]
Bruzzone, l. and Melgani, f. 2005. Robust multiple estimator system for the analysis of biophysical parameters from remotely sensed data,” IEEE Trans. Geosci. Remote Sen, 43(1): 159–174.
Casamitjana, m., Madroñero, m., Bernal-Riobo, J. and Varga d. 2020. Soil Moisture Analysis by Means of Multispectral Images According to Land Use and Spatial Resolution on Andosols in the Colombian Andes, applied science, doi:10.3390/app10165540
Carlson, t., Gillies, t. and Perry, e. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover, journal Remote Sensing Reviews, 9: 161-173.
Fathololoumi, S., Vaezi, A., Alavipanah, S., Ghorbani, A. 2020 . Modeling the Influence of Biophysical Properties and Surface Topography on the Spatial Distribution of Soil Moisture in the Summer: A Case Study of Balikhli-Chay Watershed. Iranian journal of Ecohydrology, 7(3): 563-581. doi: 10.22059/ije.2020.299783.1307. [in Persian]
Feizizadeh, B., Didehban, K., Gholamnia, K. 2016. Extraction of Land Surface Temperature (LST) based on Landsat Satellite Images and Split Window Algorithm Study area: Mahabad Catchment. Scientific- Research Quarterly of Geographical Data (SEPEHR), 25(98): 171-181. doi: 10.22131/sepehr.2016.22145. [in Persian]
Greifeneder, f., Khamala, e., Sendabo, d., Wagner, w., Zebisch, m. and Farah h. 2018. Detection of soil moisture anomalies based on Sentinel-1, journal Physics and Chemistry of TheEarth, 1-24. https://www.researchgate.net/publication/329333037.
Harti, e., Lhissou, a., Chokmani, r., Ouzemou, k., Hassouna, j. and Bachaoui, m. 2016. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. International Journal of Applied Earth Observation and Geoinformation. 50: 64-73.
Hosseini Chamani, F., Farrokhian Firouzi, A. 2019. Pedotransfer Function (PTF) for Estimation Soil moisture using NDVI, land surface temperature (LST) and normalized moisture (NDMI) indices. Journal of Water and Soil Conservation, 26(4), 239-254. doi: 10.22069/jwsc.2019.15306.3053.[in Persian]
Khanmohammadi, F., Homaee, M., Noroozi, A. 2015. Soil moisture estimating with NDVI and land surface temperature and normalized moisture index using MODIS images. Journal of Water and Soil Resources Conservation, 4(2), 37-45. [in Persian]
Koohi, S., Azizian, A., Brocca, L. 2019. Calibration of VIC-3L Hydrological Model using Satellite-Based Surface Soil Moisture Datasets. Iran-Water Resources Research, 15(4): 55-67. [in Persian]
Masoodian, S., Rayatpishe, F., Keykhosravi Kiani, M. 2014. Introducing the TRMM and Asfezariprecipitation database: A comparative study. Iranian Journal of Geophysics, 8(4) :31-51. [in Persian]
McNally, a., Arsenault, k., Kumar, s., Shukla, s., Peterson, p., Wang, s., Funk, c., Peters-Lidard, c. and Verdin, v. 2017. Data Descriptor: A land data assimilation system for sub-Saharan Africa food and water security applications, SCIENTIFIC DATA. DOI: 10.1038/sdata.2017.12.
Mobasheri, m. and Amani, m. 2016. Soil moisture content assessment based on Landsat 8 red, near-infrared, and thermal channels, Journal. Appl. Remote Sens, 10(2): 1-15.
Nadian, M., Mirzaei, R., Soltani Mohammadi, S. 2018. Application of Moran'sI Autocorrelation in Spatial-Temporal Analysis of PM2.5 Pollutant (A case Study: Tehran City). Journal of Environmental Health Engineering, 5 (3) :197-213. [in Persian]
Pandey, r., Goswami, s., Sarup, j. and Matin sh. 2020. The thermal–optical trapezoid model‑based soil moisture estimation using Landsat‑8 data, journal Modeling Earth Systems and Environment, 1-9. https://doi.org/10.1007/s40808-020-00975-8.
Pasolli, l., Notarnicola, c., Bertoldi, g., Bruzzone, l., Remelgado, r., Greifeneder, f., Niedrist, g., Chiesa, s., Tappeiner, u. and Zebisch m. 2019. Estimation of Soil Moisture in Mountain Areas Using SVR Technique Applied to Multiscale Active Radar Images at C-Band, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1): 261-283.
Peng, w.,Wang J., Zhang, j. and Zhang y. 2020. Soil moisture estimation in the transition zone from the Chengdu Plain region to the Longmen Mountains by field measurements and LANDSAT 8 OLI/TIRS-derived indices, Arabian Journal of Geosciences. 1-15, https://doi.org/10.1007/s12517-020-5152-z.
Prashant, K. S. George, P. P. Yann, H. K. 2016. Satellite Soil Moisture Retrieval Techniques and Applications, 411 pp.
Ranjbar, S., Akhoondzadeh, M. 2020. Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images. Journal of Geospatial Information Technology, 7 (4) :215-232. [in Persian]
Sari Sarraf, B., Naghizadeh, H., Rasouly, A., Jahanbakhsh, S., Babaeyan, I. 2019. Modeling and spatial analysis of snow depth in Northern Iran based on database from European Centre for Medium-Range Weather Forecasts (ECMWF). Physical Geography Research Quarterly, 51(4): 651-671. doi: 10.22059/jphgr.2019.268047.1007289. [in Persian]
Sadeghi, m., Babaeian, e., Tuller, m. and Jones, s. 2017. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations, Journal Remote Sensing of Environment http://dx.doi.org/10.1016/j.rse.2017.05.041 t, 52-68.
Sheikh, h., Parizadi, t., Rezaei, m., Sajadi, m. 2012. Analysis and determination of physical form in Isfahan using modeling and Moran, Urban planning, 3(9): 117-174. [in Persian]
Shafian, s. and maas, s. 2015. Improvement of the Trapezoid Method Using Raw Landsat Image Digital Count Data for Soil Moisture Estimation in the Texas (USA) High Plains, Sensors, doi:10.3390/s150101925, 1925-1944.
SUTARIYA, s., HIRAPARA, a., MEHERBANALI, m., TIWARI, m., SINGH, v. and KALUBARME, m. 2021. Soil Moisture Estimation using Sentinel-1 SAR data and Land Surface Temperature in Panchmahal district, Gujarat State, 8(1): 2148-9173.
Yousefzadeh, A., Zeynali, B., Valizadeh Kamran, K., Asghari Sarskanrood, S. 2019. The Estimation of Soil Moisture Using the New Visible Trapezoidal Model for Simineh Basin Using Images of Landsat 8 Satellite. Hydrogeomorphology, 6(18): 181-205. [in Persian]
Yadav, s., Singh, p., Pal Singh Jadaun, s., Kumar, n. and Upadhyay, r. 2019. SOIL moisture analysis of lalitpur district uttar pradesh india using landsat and sentinel data The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3(6): 1-7.