تأثیر بیوچار و زئولیت بر جذب کادمیم در فلفل دلمهای (Capsicum annuum) و آبشویی آن در خاک شور سدیمی
الموضوعات :
1 - 1) استادیار گروه مهندسی محیط زیست، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران.
الکلمات المفتاحية: بیوچار, زئولیت, حرکت رو به پائین, کربن آلی, کادمیم,
ملخص المقالة :
زمینه و هدف: تأثیر بیوچارها و نانو ذرات رس مختلف بر روی تثبیت و جذب کادمیم توسط گیاهان بهطور گستردهای مورد مطالعه قرار گرفته است، اما مطالعات کمی بر روی انتقال بخشهای مختلف آلودگی خاک در خاکهای شور و قلیایی متمرکز شده است. بنابراین، این فرضیه مطرح شد که حرکت کادمیوم در خاکهای آلوده تحت تأثیر استفاده از بیوچار و نانو ذرات قرار میگیرد و انتقال کادمیوم از لایههای بالای پروفیل خاک به لایههای پایین در خاک شور و قلیایی کاهش مییابد. بنابراین پژوهش حاضر بهمنظور بررسی پالایش خاکهای شور و قلیایی آلوده به فلز کادمیوم بهوسیله گیاه فلفل دلمه سبز تحت دو ماده اصلاحیه خاک شامل بیوچار و نانو ذره زئولیت انجام شد.روش پژوهش: پژوهش حاضر تحت دو ماده اصلاحیه خاک شامل بیوچار کاه گندم با نام علمی Triticum؛ و نانو ذرات زئولیت در سطح 5 گرم در کیلوگرم خاک آلوده به کادمیم انجام شد. نمونههای خاک از عمق 0-30 سانتیمتری از دشت سجزی، جمعآوری شدند. خاک جمعآوری شده هوا خشک و بهمنظور آزمایش از الک 5 میلیمتری عبور داده شدند و برای آزمایش استفاده گردیدند. خاک آلوده به کادمیم با قرار دادن 500 گرم خاک خشک شده در یک بشر شیشهای 2 لیتری و مخلوط کردن آن با 250 میلی لیتر نیترات کادمیم g 2/1 Cd, Cd(NO3)2 4H2O)) ایجاد شد. در یک مزرعه بایر در منطقه دشت سجزی سه کرت (پلات) از خاک خالی شد و پلاتها از خاکی که بهطور یکنواخت و جداگانه با خاک آلوده و همچنین با بیوچار و زئولیت در سطح 0% و 5% (w/w) مخلوط شده بود، پر شد. پس از تهیه خاکهای آلوده، فلفل دلمه سبز (Capsicum annuum) در شرایط طبیعی در آنها کاشته شدند.یافتهها: نتایج نشان داد که بیوماس فلفل دلمه سبز با استفاده از بیوچار و زئولیت به ترتیب 2/79 درصد و 3/18 درصد افزایش یافت. غلظت کادمیم در میوه فلفل دلمه سبز در استفاده از بیوچار در مقایسه با هر دو تیمار شاهد و خاک با زئولیت تقریباً 30% کاهش یافت. کادمیم جذب شده توسط ساقههای فلفل دلمه سبز در حدود 50٪ کادمیم کل گیاه بود. کاربرد مقادیر 5 گرم بیوچار و زئولیت بر کیلوگرم خاک به ترتیب سبب نگهداشت 42 درصد و 78 درصد کادمیم خاک در خاک سطحی در مقایسه با خاک زیرین شد.نتایج: با توجه به نتایج میتوان بیان کرد گیاه فلفل دلمه سبز، میتواند بهعنوان جذبکننده کادمیم معرفی شود. همچنین نتایج بیانگر برتری تیمار زئولیت نسبت به تیمار بیوچار در کاهش انتقال آلودگی به لایههای زیرین خاکهای شور و قلیا است و افزودن بیوچار باعث افزایش بیشتر در بیوماس فلفل دلمه سبز در مقایسه با نانوذره زئولیت در خاک آلوده به فلز کادمیم است.
Reference:
Agushi, M., Qajar Spanloo, M., Bahmanyar, M. 2015. The effect of zeolite application on quantitative and qualitative yield of soybean under stress and non-stress conditions. Journal of Plant Production Research, 2015; 22 (2): 173-187. [in Persian]
Azadbakht, Z., Beheshti Al-Agha, A., Kahrizi, D., Karami, M. 2019. 'Effect of cadmium and lead pollution on soil biological quality and growth of rapeseed (Brassica napus)', Iranian Soil and Water Research, 51 (1): 217-230. doi: 10.22059/ijswr.2019.272322.668081. [in Persian]
Baker, D.E. and M.C.Amacher. 1982. Nickel, Copper, Zinc and Cadmium. p. 323- 334. In: A.L. Page, R.H. Millers and D. R. Keeney (eds.), Methods of Soil Analysis. Part 2: chimical and microbiological properties. 2 nd ed., Agronomy Monograph No. 9, American Socitey of Agronomy, Madison, WI.
Burachevskaya, M., Mandzhieva, S., Bauer, T., Minkina, T., Rajput, V., Chaplygin, V., Fedorenko, A., Chernikova, N., Zamulina, I., Kolesnikov, S., Sushkova, S., Perelomov, L. 2020. The Effect of Granular Activated Carbon and Biochar on the Availability of Cu and Zn to Hordeum sativum Distichum in Contaminated Soil. Plants, 10(5):841. doi.org/10.3390/plants10050841
Chen, D., Guo, H., Li, R., Pan, G., Cheng, A. and Joseph, S. 2016. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice -A field study over four rice seasons in Hunan, China. Science of the total environment, 541: 1489–1498.
Chen B., Zhou, D. and Zhu, L. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental science and technology, 42; (14):5137–5143.
Cui, L., Pan, G., Li, L., Bian, R., Liu, X., Yan, J., Quan, G., Ding, C., Chen, T., Liu, Y. et al. 2016. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecological engineering, 93:1–8.
Cui, L., Yin, C., Chen, T., Quan, G., Ippolito, A., Liu, B., Yan, J. and Hussain, Q. 2019. Biochar immobilizes and degrades 2,4,6-Trichlorophenol in soils. Environmental Toxicology and Chemistry, 38(6): 1364–1371.
Dai, Y., Zheng, H., Jiang, Z. and Xing, B. 2020. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis . Science of the total environment, 713: 136635, https://doi.org/10.1016/j.scitotenv.2020.136635
Fellet, G., Marmiroli, M. and Marchiol, L.2014. Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Science of the total environment, 468–469:598–608.
Gaur, A. and Adholeya, A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science. 86: 528-534.
Gu, C. and Bai, Y. 2018. Heavy metal leaching and plant uptake in mudflat soils amended with sewage sludge. Environmental Science and Pollution Research. 25(31): 31031–31039.
He, H., Tam, N.F.Y., Yao, A., Qiu, R., Li, W.C. and Ye, Z. 2017. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere, 189: 247–254.
Jacob, H. and Clarke, G. 2002. Methods of Soil Analysis, Part 4, Physical Method. Soil Science Society of America. Madison, Wisconsin, USA.
Jafari, M., Jahantab, E., Moammari, M. 2019. Investigation of refining heavy metal contaminated soils by sunflower (Helianthus annuus L.). Quarterly Journal of Environmental Science and Technology, 1399; 22 (7): 1-14. doi: 10.22034/jest.2021.24665.3373. [in Persian]
Jeffery, S., Bezemer, T.M., Cornelissen, G., Kuyper, T.W., Lehman, J., Mommer, L., Sohi, S., Voorde, T.F.J., Wardle, D. and Groeningen, J.W. 2015. The way forward in biochar research: targeting trade-offs between the potential wins. Global Change Biol Bioenergy, 7(1): 1–13.
McKeon C.A,. Jordan, F.L., Glenn, E.P., Waugh, W.J. and Nelson, S.G. 2005. Rapid nitrate loss from a contaminated desert soil. Journal of Arid , 119-136.
McLean E.O. 1988. Soil pH and lime requirement. P 199-224. In: A.L. Page (Ed). Methods of Soil Analysis. Part. American Society of Agronomy Soil Science Society of America Madison.
Medyńska-Juraszek, A., Rivier, P.A., Rasse, D. and Joner, E.J. 2020. Biochar Affects Heavy Metal Uptake in Plants through Interactions in the Rhizosphere. Applied Sciences, 10(15): 5105. https://doi.org/10.3390/app10155105
Mondal, M., Biswas, B., Garai, S., Sarkar, S., Banerjee, H., Brahmachari, K., Bandyopadhyay, P.K., Maitra, S., Brestic, M., Skalicky, M., Ondrisik, P. and Hossain, A. 2021. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy, 11; 448. https://doi.org/10.3390/ agronomy11030448
Ok, YS., Usman, A.R., Lee, S.S., Abd El-Azeem, S.A., Choi, B., Hashimoto, Y. and Yang, J.E. 2011. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere, 85(4): 677–682
Qiao, Y., Wu, J., Xu, Y., Fang, Z., Zheng, L., Cheng, W., Tsang, E.P., Fang, J. and Zhao, D. 2017. Remediation of cadmium in soil by biochar-supported iron phosphate nanoparticles. Ecological Engineering, 106: 515-522.
Reibe, K., Götz, K. P., Ross, C. L., Doering, T. F., Ellmer, F. and Ruess, L. 2015. Impact of quality and quantity of biochar and hydrochar on soil collembola and growth of spring wheat. Soil Biology and Biochemistry, 8: 84–87. doi: 10.1016/j.soilbio.2015.01.014
Soltani Mohammadi, A., Khodarahmi, Y., Boroumaneh N., Saeed, N., Abd A. 2018. Evaluation of the effect of modified biochar and zeolite on some physical and chemical properties of loam soil. Journal of Soil and Water Resources Protection (Scientific - Research), 8 (4): 87-102. [in Persian]
Summer, M. E. and Miller, W. P. 1996. Cation exchange capacity and exchange coefficient. P. 1201-1230. In D. L. Sparks (ed.) Methods of Soil Analysis. Part 3. American Society of Agronomy, Madison, WI
Sun, J., Qinya, F., Jingwen, M., Liqiang, C., Guixiang, Q., Jinlong, Y., Limin, W., Kiran, H., Basit, A. and Hui W. 2020. Effects of biochar on cadmium (Cd) uptake in vegetables and its natural downward movement in saline-alkali soil, Environmental pollutants and bioavailability. 232: 36–46.
Tagoe, S., Horiuchi, T. and Matsui, T. 2008. Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant Soil. 306: 211–220.
Walkley, A. and Black, A. 1934. Estimation of soil organic carbon in by the chromic acid titration method. Soil Science, 37: 29–38.
Wang, M., Chen, S., Chen, L, and Wang D. 2019a. Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environmental Pollution, 252:1609–1621.
Wang, Y., Villamil, M., Davidson, P.C. and Akdeniz, N. 2019b. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of the total environment, 685: 741-752.
Watson, M.E. and Brown, J.R. 1998. Recommended chemical soil test procedures for the north central region. p. 286-304. In J.R. Brown (ed.) University of Missouri, Columbia, MO White, K.L. 1965 Shrub-carrs of southeastern Wisconsin Ecology .
Xiao R, Wang P, Mi S, Ali, A., Liu, X., Li, Y., Guan, W., Li, R. and Zhang, Z. 2019. Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Ecotoxicology and environmental safety, 181: 155–163.
Yuan, P., Wang, J., Pan, Y., Shen, B. and Wu, C. 2019. Review of biochar for the management of contaminated soil: preparation, application and prospect. Science of the total environment, 2019; 659: 473–490.
Zhang, X., Zhong, T., Liu, L. and Ouyang, X. 2015. Impact of Soil Heavy Metal Pollution on Food Safety in China. Plos one, 10(8): e0135182. https://doi.org/10.1371/journal.pone.0135182
_||_