استفاده کارآمد و پایدار از منابع آبی خوزستان با تدوین بنچمارکهای ردپای آب
الموضوعات :سمیرا سالاری 1 , فاطمه کاراندیش 2 , پرویز حقیقت جو 3 , مایت آلدایا 4
1 - دانشجوی دکتری گروه مهندسی آب، دانشگاه زابل، زابل، ایران.
2 - دانشیار، گروه آب، دانشگاه زابل، زابل، ایران.
3 - دانشیار، گروه آب، دانشگاه زابل، زابل، ایران.
4 - استاد، گروه آب، دانشگاه فنی مادرید، مادرید، اسپانیا.
الکلمات المفتاحية: تدوین بنچمارک ردپای آب, ارزیابی ردپای آب, کمبود آب آبی, تحلیل کارایی و پایداری, ایران,
ملخص المقالة :
زمینه و هدف: بحران آب انسان نهاد، یکی از چالش های جهانی است که پایداری جهان در آینده را تهدید می کند. برداشت بی رویه از منابع آب آبی برای تأمین نیاز غذایی در حال رشد بشر، مهم ترین دلیل این بحران است. بنچ مارکینگ ردپای آب که هنوز در ابتدای مسیر خود قرار دارد، روش مناسبی برای تعیین مؤلفه ناکارآمد ردپای آب می باشد. لذا، در این پژوهش، امکان محدود نمودن ردپای آب در بخش کشاورزی به سطح پایدارش در استان خوزستان بررسی شد.روش پژوهش: این تحقیق، شامل سه مرحله محاسبه ردپای آب، تحلیل پایداری و تحلیل کارآمدی می باشد. ابتدا، ردپای آب مصرفی و تخریب کننده برای 32 گیاه در شهرستان های استان خوزستان در طول دوره 2016-1986 محاسبه شد. ردپای آب سبز و آبی، به ترتیب، از تقسیم تبخیر-تعرق سبز و آبی بر عملکرد گیاه به دست آمد. برای تخمین مقادیر روزانه تبخیر-تعرق، از مدل AquaCrop استفاده و سپس، از حاصل جمع مقادیر روزانه، مقادیر فصلی محاسبه شد. ردپای آب خاکستری برای کود نیتروژن مصرفی محاسبه شد. در گام بعدی، وضعیت پایداری ردپای آب آبی، با مقایسه مقادیر مطلق ردپای آب آبی با آب آبی موجود، که از کسر نیاز زیست محیطی از رواناب طبیعی به دست آمد، تعیین شد. سپس، مقادیر بنچ مارک ردپای آب برای سطوح تولید 10، 25 و 50 درصد تعیین شد و بر اساس آن ها، مقادیر ناکارآمد ردپای آب برای هر گیاه به دست آمد. در انتها، مقادیر ردپای آب ناکارآمد و ناپایدار با هم مقایسه شدند تا معلوم شود که آیا دستیابی به سطوح بنچ مارک می تواند آب مصرفی را به سقف پایدارش در محدوده پژوهش محدود نماید. یک تحلیل همبستگی برای تعیین ریشه های اصلی ناکارآمدی در استان خوزستان نیز انجام شد.یافته ها:همگام با 63 درصد افزایش در تولید و 53 درصد افزایش ردپای آب آبی واحد، مقدار مطلق ردپای آب آبی در طول دوره پژوهش 80 درصد افزایش یافت. این روند، منتج به افزایش شدت برداشت آب های زیرزمینی با شدت 12 میلیون مترمکعب در سال شد.. سهم آب سبز در ردپای آب مصرفی، از 60 درصد در سال 1986 به 48 درصد در سال 2016 کاهش یافت. لکن، مجموع ردپای آب خاکستری، روندی کاهشی را با شیب متوسط 140 مترمکعب در هکتار در سال طی نمود که این کاهش، بیش تر به دلیل کاهش ردپای آب خاکستری گیاهان اقتصادی بود.در سال 2016، 98/0 میلیارد مترمکعب از مجموع آب آبی مصرفی ناپایدار بود که این مقدار، 85 درصد بیش تر از سال 1986 بود. تعداد شهرستان ها با مصارف ناپایدار نیز از 2 شهرستان در سال 1986 به 9 شهرستان در سال 2016 رسید. گیاهان غذایی بیش ترین سهم را در ردپای آب آبی ناپایدار داشتند. بر اساس تحلیل کارآمدی، و با لحاظ سطوح بنچ مارک در سطح 25 درصد از کل تولید، ردپای آب آبی ناکارآمد در سال 2016، بین 26/0 تا 660 میلیون مترمکعب در شهرستان های مختلف متغیر بود. در مقایسه با سال 1986، میزان ناکارآمدی در 16 شهرستان بین 10 تا 3860 مترمکعب در هکتار افزایش یافت. اگرچه در مقیاس استانی، دستیابی به سطوح بنچ مارک می تواند ردپای آب را به حدود پایدارش برساند؛ لکن در دو شهرستان اندیمشک و رامشیر، مقادیر ردپای آب ناپایدار، به ترتیب، 8/6 و 9/340 میلیون مترمکعب بیش تر از مقادیر ردپای آب آبی ناکارآمد بودند و سیستم تولید آنها نیازمند بازنگری اساسی است. آنالیز همبستگی نشان داد که افزایش در ارزش افزوده بخش کشاورزی و یا صادرات محصولاتش، کشت محصولات آب بر، افزایش شدت کمبود آبی و دسترسی به منابع آب زیرزمینی می-تواند میزان ناکارآمدی را افزایش دهد. در مقابل، افزایش تعداد بهره برداران در واحد سطح، عملکرد محصول، و سطح زیر کشت گیاهان اقتصادی، میتواند از میزان ناکارآمدی بکاهد.نتایج:ارزیابی ردپای آب نشان داد که تولید گیاه در استان خوزستان در ازای تعدی به حریم محیط زیست صورت می گیرد که خطری برای پایداری کشاورزی در آینده نزدیک است. اگرچه دستیابی به سطوح بنچ مارک ردپای آب می تواند با حذف مؤلفه ناکارآمد ردپای آب، شرایط محدود نمودن مجموع ردپای آب به سطوح پایدارش را فراهم کند، لکن خطر ناپایداری، هنوز در برخی مناطق وجود دارد که این مساله، اهمیت تحلیل در مقیاس های ریز را نشان می دهد. بنابراین، برای تدوین برنامه های توسعه پایدار، انجام پژوهش های بعدی برای تعیین ماه های بحرانی نیز ضروری است.
Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration guide Lines for computing crop water requirements, Irrigation and Drainage Paper 56, Rome, Italy. p 300.
Ercin, A.E., Hoekstra, A.Y. (2014). Water footprint scenarios for 2050: A global analysis. Environ. Int. 64, 71–82.
Fishman, R., Devineni, N., & Raman, S. (2015). Can improved agricultural water use efficiency save India’s groundwater?. Environmental Research Letters, 10(8), 084022. https://iopscience.iop.org/article/10.1088/1748-9326/10/8/084022/pdf
Guo, L., Li, X., Wang, L. (2021). Economic size and water use efficiency: an empirical analysis of trends across China. Water policy, https://doi.org/10.2166/wp.2021.189.
Hoekstra, A.Y., A.K. Chapagain, M.M. Aldaya, and M.M. Mekonnen. (2011). The Water Footprint Assessment Manual: Setting the Global Standard. London, UK: Earthscan.
Hyang, Y., Huang, X., Xie, M., Cheng, W., Shu, Q. (2021). A study on the effects of regional differences on agricultural water resource utilization efficiency using super-efficiency SBM model. Scientific Report. https://doi.org/10.1038/s41598-021-89293-2
IWRMC. (2021). Iran’s Water Resource Management Company. http:// www.wrm.ir/.
Karandish, F. (2021). Socioeconomic benefits of conserving Iran’s water resources through modifying agricultural practices and water management strategies. Ambio. doi.org/10.1007/s13280-021-01534-w.
Karandish, F., Hoekstra, A.Y., Hogeboom, R.J. (2018). Groundwater saving and quality improvement by reducing water footprints of crops to benchmarks levels. Advances in Water Resources. 121, 480-491.
Karandish, F. (2019). Applying grey water footprint assessment to achieve environmental sustainability within a nation under intensive agriculture: a high-resolution assessment for common agrochemicals and crops. Environmental Earth Sciences. https://doi.org/10.1007/s12665-019-8199-y
KWPAC. (2021). Khuzestan Water and Power Authority Company. https://www.kwpa.ir/?l=EN#gsc.tab=0
Lei, W., Changbin, L., Xuhong, X., Zhibin, H., Wanrui, W., Yuan, Z., Jianmei, W., Jianan, L. (2020). The impact of increasing land productivity on groundwater dynamics: a case study of an oasis located at the edge of the Gobi Desert. Carbon Balance and Management. 15(7). https://doi.org/10.1186/s13021-020-00142-7
Long, K., Pijanowski, B.C. (2017). Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales. Land Use Policy. 69, 502-511.
Madani, K., A. AghaKouchak, and A. Mirchi. (2016). Iran’s socioeconomic Drought: Challenges of a water-bankrupt nation. Iranian Studies 49: 997–1016.
Mekonnen, M.M., Hoekstra, A.Y. (2016). Four billion people facing severe water scarcity, Science Advances, 2(2): e1500323.
Richards, A. (2002). Coping with Water Scarcity: The Governance Challenge. Institute on Global Conflict and Cooperation. Policy Paper 54. 34p
_||_