مقایسه مدلهای خطی و غیرخطی سینتیک حذف آرسنیک با استفاده از کامپوزیت TiO2-Fe2O3 از محلول آبی
الموضوعات :سارا رجبی 1 , مهدی بهرامی 2 , محمدرضا محمودی 3
1 - دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فسا.
2 - دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فسا.
3 - استادیار، گروه آمار، دانشکده علوم، دانشگاه فسا.
الکلمات المفتاحية: آرسنیک, شبه مرتبه اول, الوویچ, شبه مرتبه دوم, سینتیک, توابع خطا,
ملخص المقالة :
زمینه و هدف: فلزات سنگین بهعنوان یکی از عوامل مهم تهدیدکننده کیفیت آب در بسیاری از مناطق محسوب می شوند، از این رو توجه محققان بسیاری را به خود جلب کردهاند. در این پژوهش تغییرات زمانی حذف آرسنیک از محلول آبی با استفاده از کامپوزیت فتوکاتالیز- جاذب TiO2-Fe2O3 در مدت زمان 360 دقیقه مورد بررسی قرار گرفت. سپس قابلیت مدل های خطی و غیر خطی شبه مرتبه اول، شبه مرتبه دوم، الوویچ و توانی در توصیف فرآیند سینتیک ارزیابی شد.روش پژوهش: برای تعیین سینتیک جذب آرسنیک از محلول آبی توسط کامپوزیت TiO2-Fe2O3 آزمایش های جذب ناپیوسته در pH برابر با 7، غلظت اولیه 40 میلی گرم بر لیتر و دوز جاذب 1 گرم بر لیتر انجام شد. پس از برازش خطی و غیر خطی مدل های سینتیک بر داده های جذب و یافتن ثابت های هر مدل، مقدار جذب در زمان های مختلف محاسبه و با مقادیر اندازه گیری شده در آزمایشگاه مقایسه گردید.یافتهها: نتایج نشان داد که با افزایش زمان، میزان جذب افزایش یافت و غلظت آرسنیک در زمان 25 دقیقه به تعادل رسید .با در نظر گرفتن مقادیر توابع خطا در برازش خطی مشاهده شد که معادله شبه مرتبه دوم با کمترین میزان خطاها و بیشترین ضریب تبیین (92/99%) انطباق بهتری بر داده های آزمایشگاهی داشت. پس از آن، معادله شبه مرتبه اول عملکرد بهتری داشت و ضعیف ترین شبیه سازی مربوط به مدل الوویچ بود. در تجزیه و تحلیل غیر خطی، ضریب تبیین تمامی مدل ها بالا و بسیار نزدیک به هم بود لذا با توجه به مقادیر توابع خطا، مدل الوویچ دارای کمترین مقدار خطا بود که نشان دهنده بهترین برازش بر داده های سینتیکی می باشد. به دنبال آن به ترتیب مدل های توانی، شبه مرتبه دوم و شبه مرتبه اول بهترین برازش را بر داده های جذب سینتیکی داشتند.نتایج: مقایسه مدلها تا 360 دقیقه با استفاده از ضریب تبیین و توابع خطا (ضریب تبیین، خطای میانگین مربعات خطا، مجموع مربعات خطاها، مجموع خطاهای مطلق، میانگین خطای نسبی، تابع خطای کسری ترکیبی، درصد انحراف معیار مارکوارت) نشان داد که استفاده از فرم خطی می تواند منجر به نتیجه و تفسیری کاملاً متفاوت از فرم غیرخطی مدل شود؛ بهطوری که بر اساس فرم های خطی، مدل شبه مرتبه دوم و بر اساس فرم های غیرخطی، مدل الوویچ بهترین برازش را بر داده های سینتیکی داشت. هم چنین برازشهای غیرخطی مدلهای سینتیکی نسبت به فرمهای خطی برتری داشتند. بهطور کلی نتایج نشان داد که کامپوزیت TiO2-Fe2O3 دارای پتانسیل بالایی در زمینه حذف آرسنیک از محلول آبی است.
Amiri, M. J., Bahrami, M., & Dehkhodaie, F. (2019). Optimization of Hg (II) adsorption on bio-apatite based materials using CCD-RSM design: characterization and mechanism studies. Journal of Water and Health, 17(4), 556-567.
Bahrami, M., Amiri, M. J., & Dehkhodaie, F. (2021). Effect of different thermal activation on hydroxyapatite to eliminate mercury from aqueous solutions in continuous adsorption system. International Journal of Environmental Analytical Chemistry, 101(14), 2150-2170.
Bahrami, M., Amiri, M. J., & Koochaki, S. (2017). Removal of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies. Pollution, 3(4), 539-552.
Bahrami, M., Boroomandnasab, S., Kashkuli, H. A., Farrokhian Firoozi, A., & Babaei, A. A. (2012). Removal of Cd (II) from aqueous solution using modified Fe3O4 nanoparticles. Rep. Opin, 4(5), 31-40.
Bakranov, N., Zhabaikhanov, A., Kudaibergenov, S., & Ibraev, N. (2018). Decoration of wide bandgap semiconducting materials forenhancing photoelectrochemical efficiency of PEC systems. J. Phys.: Conf. Ser. 987 012028.
Bartonova, L., Ruppenthalova, L., & Ritz. M. (2017). Adsorption of Naphthol Green B on unburned carbon: 2- and 3-parameter linear and non-linear equilibrium modelling. Chinese Journal of Chemical Engineering 25: 37-44.
Behnam, H., & Farrokhian Firouzi, A. (2022). Application of linear and non-linear kinetic and isotherm models for evaluation of lead removal efficiency from aqueous solutions using biochars. Iranian Journal of Soil and Water Research. 10.22059/ijswr.2022.333585.669124
Benmessaoud, A., Nibou, D., Mekatel, E. H., & Amokrane, S. (2020). A comparative study of the linear and non-linear methods for determination of the optimum equilibrium isotherm for adsorption of Pb2+ ions onto Algerian treated clay. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(4), 153-171.
Choong Thomas, S.Y., Chuah, T.G., Robiah, Y., Gregory Koay, F.L., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217: 139-166.
Cornejo, L., Lienqueo, H., Arenas, M., Acarapi, J., Contreras, D., Yanez, J., & Mansilla, H.D. (2008). In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environmental Pollution, 156, 827-831.
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.
Gupta, S.M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Sci Bull; 56(16), 1639.
Ho, Y. S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water research, 40(1), 119-125.
Khalili Arjaghi, Sh., Ebrahimzadeh Rajaei, G., Sajjadi, N., Kashfi al-Asl, M., & Fataei, A. (2021). Removal of metallic mercury and arsenic contaminants from water using synthesized iron oxide nanoparticles from Sinensis Ramalina lichen extract. Journal of Health. 11 (3): 408-397.
Lei, L., Li, X., & Zhang, X. (2008). Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and purification Technology, 58(3), 359-366.
Mallakpour, S., & Tabesh, F. (2019). Tragacanth gum based hydrogel nanocomposites for the adsorption of methylene blue: Comparison of linear and non-linear forms of different adsorption isotherm and kinetics models. International journal of biological macromolecules. 133, 754-766.
Nazari, A., Nakhaei, M., and Yari, A. (2019). Removal of Arsenic Contaminant Using Titanium Dioxide (Anatase) Nanoparticles in Aqueous Environment Journal of Qom University of Medical Sciences. 13 (8): 62-72. [in Persian]
Praveen, K., Abinandan, S., Natarajan, R., & Kavitha, M. S. (2018). Biochemical responses from biomass of isolated Chlorella sp., under different cultivation modes: non-linear modelling of growth kinetics. Brazilian Journal of Chemical Engineering, 35, 489-496.
Rahmani, A. R., Ghaffari, H. R., and Samadi, M. T. (2010). Removal of arsenic (III) from contaminated water by synthetic nano size zerovalent iron. World Academy of Science, Engineering and Technology, 62, 1116-1119.
Rao Karri, R., J. N. Sahu and N. S. Jayakumar. 2017. Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods. Journal of the Taiwan Institute of Chemical Engineers, 80, 472-487.
Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and environmental safety. 112, 247-270.
Sohrabi, M.R., Amiri, S., Masoumi, H.R.F., & Moghri, M. (2014). Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology. J Ind Eng Chem. 20(4): 2535-2542. [in Persian]
Shahbazi, A., Zahedinia, S., & Hashemi, S.H. (2017). Evaluation of the efficiency of poplar soil in removing methylene blue from aqueous solutions; Isotherm, kinetics and thermodynamics studies. Modares Civil Engineering.16(2), 161-172. [in Persian]
Torki Harchegani, R., Mirghaffari, N., & Soleimani Aminabadi, M. (2019). Comparison of Linear and Nonlinear Kinetic Models and Adsorption Isotherms of Zinc from an Aqueous Solution by Biochar. JWSS-Isfahan University of Technology, 23(2), 189-200. [in Persian]
World Health Organization. (2001). Arsenic in drinking water. Fact sheet No. 210. Retrieved: January. 12:2007.
Weng, X., Huang, L., Chen, Z., Megharaj, M., & Naidu, R. (2013). Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind Crops Prod. 51:342-347.
Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ. 466:210-213.
Wen, D.H., Ho, Y.S., & Tang, X.Y. (2006). Comparative sorption kinetic studies of ammonium onto zeolite. J Hazard Mater. 133:252-256.
Zheng, H., Han, L.J., Ma, H.W., Zheng, Y., Zhang, H.M., Liu, D.H., & Liang, S.P. (2008). Adsorption characteristics of ammonium ion by zeolite 13X. J Hazard Mater. 158:577-584.
_||_Amiri, M. J., Bahrami, M., & Dehkhodaie, F. (2019). Optimization of Hg (II) adsorption on bio-apatite based materials using CCD-RSM design: characterization and mechanism studies. Journal of Water and Health, 17(4), 556-567.
Bahrami, M., Amiri, M. J., & Dehkhodaie, F. (2021). Effect of different thermal activation on hydroxyapatite to eliminate mercury from aqueous solutions in continuous adsorption system. International Journal of Environmental Analytical Chemistry, 101(14), 2150-2170.
Bahrami, M., Amiri, M. J., & Koochaki, S. (2017). Removal of caffeine from aqueous solution using multi-wall carbon nanotubes: kinetic, isotherm, and thermodynamics studies. Pollution, 3(4), 539-552.
Bahrami, M., Boroomandnasab, S., Kashkuli, H. A., Farrokhian Firoozi, A., & Babaei, A. A. (2012). Removal of Cd (II) from aqueous solution using modified Fe3O4 nanoparticles. Rep. Opin, 4(5), 31-40.
Bakranov, N., Zhabaikhanov, A., Kudaibergenov, S., & Ibraev, N. (2018). Decoration of wide bandgap semiconducting materials forenhancing photoelectrochemical efficiency of PEC systems. J. Phys.: Conf. Ser. 987 012028.
Bartonova, L., Ruppenthalova, L., & Ritz. M. (2017). Adsorption of Naphthol Green B on unburned carbon: 2- and 3-parameter linear and non-linear equilibrium modelling. Chinese Journal of Chemical Engineering 25: 37-44.
Behnam, H., & Farrokhian Firouzi, A. (2022). Application of linear and non-linear kinetic and isotherm models for evaluation of lead removal efficiency from aqueous solutions using biochars. Iranian Journal of Soil and Water Research. 10.22059/ijswr.2022.333585.669124
Benmessaoud, A., Nibou, D., Mekatel, E. H., & Amokrane, S. (2020). A comparative study of the linear and non-linear methods for determination of the optimum equilibrium isotherm for adsorption of Pb2+ ions onto Algerian treated clay. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(4), 153-171.
Choong Thomas, S.Y., Chuah, T.G., Robiah, Y., Gregory Koay, F.L., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217: 139-166.
Cornejo, L., Lienqueo, H., Arenas, M., Acarapi, J., Contreras, D., Yanez, J., & Mansilla, H.D. (2008). In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environmental Pollution, 156, 827-831.
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.
Gupta, S.M., & Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Sci Bull; 56(16), 1639.
Ho, Y. S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water research, 40(1), 119-125.
Khalili Arjaghi, Sh., Ebrahimzadeh Rajaei, G., Sajjadi, N., Kashfi al-Asl, M., & Fataei, A. (2021). Removal of metallic mercury and arsenic contaminants from water using synthesized iron oxide nanoparticles from Sinensis Ramalina lichen extract. Journal of Health. 11 (3): 408-397.
Lei, L., Li, X., & Zhang, X. (2008). Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and purification Technology, 58(3), 359-366.
Mallakpour, S., & Tabesh, F. (2019). Tragacanth gum based hydrogel nanocomposites for the adsorption of methylene blue: Comparison of linear and non-linear forms of different adsorption isotherm and kinetics models. International journal of biological macromolecules. 133, 754-766.
Nazari, A., Nakhaei, M., and Yari, A. (2019). Removal of Arsenic Contaminant Using Titanium Dioxide (Anatase) Nanoparticles in Aqueous Environment Journal of Qom University of Medical Sciences. 13 (8): 62-72. [in Persian]
Praveen, K., Abinandan, S., Natarajan, R., & Kavitha, M. S. (2018). Biochemical responses from biomass of isolated Chlorella sp., under different cultivation modes: non-linear modelling of growth kinetics. Brazilian Journal of Chemical Engineering, 35, 489-496.
Rahmani, A. R., Ghaffari, H. R., and Samadi, M. T. (2010). Removal of arsenic (III) from contaminated water by synthetic nano size zerovalent iron. World Academy of Science, Engineering and Technology, 62, 1116-1119.
Rao Karri, R., J. N. Sahu and N. S. Jayakumar. 2017. Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods. Journal of the Taiwan Institute of Chemical Engineers, 80, 472-487.
Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and environmental safety. 112, 247-270.
Sohrabi, M.R., Amiri, S., Masoumi, H.R.F., & Moghri, M. (2014). Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology. J Ind Eng Chem. 20(4): 2535-2542. [in Persian]
Shahbazi, A., Zahedinia, S., & Hashemi, S.H. (2017). Evaluation of the efficiency of poplar soil in removing methylene blue from aqueous solutions; Isotherm, kinetics and thermodynamics studies. Modares Civil Engineering.16(2), 161-172. [in Persian]
Torki Harchegani, R., Mirghaffari, N., & Soleimani Aminabadi, M. (2019). Comparison of Linear and Nonlinear Kinetic Models and Adsorption Isotherms of Zinc from an Aqueous Solution by Biochar. JWSS-Isfahan University of Technology, 23(2), 189-200. [in Persian]
World Health Organization. (2001). Arsenic in drinking water. Fact sheet No. 210. Retrieved: January. 12:2007.
Weng, X., Huang, L., Chen, Z., Megharaj, M., & Naidu, R. (2013). Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind Crops Prod. 51:342-347.
Wang, T., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ. 466:210-213.
Wen, D.H., Ho, Y.S., & Tang, X.Y. (2006). Comparative sorption kinetic studies of ammonium onto zeolite. J Hazard Mater. 133:252-256.
Zheng, H., Han, L.J., Ma, H.W., Zheng, Y., Zhang, H.M., Liu, D.H., & Liang, S.P. (2008). Adsorption characteristics of ammonium ion by zeolite 13X. J Hazard Mater. 158:577-584.