Quantitative Structure- Property Relationship(QSPR) Study of 2-Phenylindole derivatives as Anticancer Drugs Using Molecular Descriptors
الموضوعات : Journal of Physical & Theoretical Chemistrysamira Bahrami 1 , fatemeh shafiei 2 , Azam Marjani 3 , Tahereh Momeni Isfahani 4
1 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
2 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
3 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
4 - Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
الکلمات المفتاحية: structure -property relationship, 2-Phenylindole derivatives, genetic algorithm -multiple linear regressions (GA-MLR), Entropy, Heat capacity,
ملخص المقالة :
A QSPR study on a series of 2-Phenylindole derivatives as anticancer agents was performed to explore the important molecular descriptor which is responsible for their thermodynamic properties such as heat capacity (Cv) and entropy(S).Molecular descriptors were calculated using DRAGON software and the Genetic Algorithm (GA) and backward selection procedure were used to reduce and select the suitable descriptors. Multiple Linear Regression (MLR) analysis was carried out to derive QSPR models, which were further evaluated for statistical significance such as squared correlation coefficient (R2) root mean square error (RMSE), adjusted correlation coefficient (R2adj) and fisher index of quality (F).The multicollinearity of the descriptors selected in the models were tested by calculating the variance inflation factor (VIF), Pearson correlation coefficient (PCC) and the DurbinWatson (DW) statistics. The predictive powers of the MLR models were discussed using Leave-One-Out Cross-Validation (LOOCV) and test set validation methods. The best QSPR models for prediction the Cv(J/molK) and S(J/molK), having squared correlation coefficient R2 =0.907 and 0.901, root mean squared error RMSE=2.019 and RMSE= 2.505, and cross-validated squared correlation coefficient R2 cv = 0.902 and 0.889, respectively. The statistical outcomes derived from the present study demonstrate good predictability and may be useful in the design of new 2-Phenylindole derivatives.
E. N. Muratov, J.ajorath, R. P. Sheridan, I. V. Tetko, D. Filimonov, V. Poroikov, T.I. Oprea, I. I. Baskin, A. Varnek, Chem. Soc. Rev., 49 (2020) 3716.
N.Ahmadinejad, F. Shafiei, T. Momeni Isfahani, Comb. Chem. High Throughput Screen. 21 (2018) 533.
E. Pourbasheer, R. Aalizadeh, M.R. Ganjali, P. Norouzi, Med. Chem. Res. 23 (2014) 57.
D. E. Arthur, A. Uzairu, P. Mamza, E. Abechi, G. Shallangwa, Albanian . J. Pharm .Sci .3(2016)4.
D. Joudaki, F. Shafiei, Curr. Comput- Aided. Drug Des. 16 (2020) 571.
R. Todeschini, V. Consonni, Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, 2000.
V. Kamath, A. Pai, J. Pharm. and Tech. 10 (2017) 3237.
K. Vorčáková, M. Májeková, E. Horáková, P. Drabina, M. Sedlák, Š. Štěpánková, Bioorg. Chem.78(2018) 280.
J. Verma, V. M. Khedkar, E. C. Coutinho, Curr. Top. Med. Chem. 10 (2010) 95.
H. Kubinyi, G. Folkers, Y. C. Martin, 3D-QSAR in Drug Design: Volume 3: Recent Advances, Kluwer Academic Publishers. New York, 2002.
S. S. El-Nakkady, M. M. Hanna, H. M. Roaiah, I. A. Ghannam, Eur. J. Med. Chem. 47 (2012) 387.
R. Gaikwad, S.A. Amin, N. Adhikari, S. Ghorai, T. Jha, S. Gayen, Struct. Chem.29(2018) 1095.
A.A.Toropovand, A.P. Toropova, Anticancer. Res. 38 (2018) 6189.
S. Y. Liao, L. Qian, T.F. Miao, H. L. Lu, K. C. Zheng, Eur. J. Med. Chem. 44 (2009) 2822.
A. K. Halder, N. Adhikari, T. Jha, Bioorganic Med. Chem. Lett. 19 (2009) 1737.
S. C. Basak, Q. Zhu, D. Mills, Curr. Comput. Aided. Drug Des. 7 (2011) 98.
M. N. Aldosari, K. K. Yalamanchi, X. Gao, S. Mani Sarathy, Energy and AI. 4 (2021) 100054.
D. Jaramillo, G. Plascencia, Basic Thermochemistry in Materials Processing. Springer International Publishing, 1st, 2017.
J. P. Lowe, K. A. Peterson, Quantum chemistry third edition. 3rd ed. Elsevier, 2006.
P. Sullivan, G. Seidel, Phys. Rev. 173(1968) 679.
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh. Nature. 1 (2018) 547.
[22] K. K. Yalamanchi, V. C. O. Van Oudenhoven, F. Tutino, M. Monge-Palacios, A. Al- shehri, X. Gao, S.M. Sarathy, J. Phys. Chem. A.,123(2019) 8305.
[23] C. C. J. Roothaan, Rev. Mod. Phys. 23 (1951) 69.
J. S. Binkley, J. A. Pople, W. J. Hehre, J. Am. Chem. Soc. 102 (1980) 939.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. A. Pople, Gaussian, Inc., Wallingford CT, 2009.
Talete srl, Dragon (ver. 5.4), Milano, Italy. Web site: www.talete.mi.it/products/software.htm
I. Dohoo, C. Ducrot, C. Fourichon, A. Donald, D. Hurnik, Prev. Vet. Med. 29 (1997) 221.
S. J. Cho, M. A. Hermsmeier, J. Chem. Inf. Comput. Sci. 42 (2002) 927.
K. H. Baumann, H. Albert M. V. Korff, J. Chemometr. 16 (2002) 339.
P. Gramatica, P. Pilutti, E. Papa, SAR. QSAR. Environ. Res. 13 (2002) 743.
M. V. Diudea, QSPR/QSAR studies for molecular descriptors, Ed Nova Science Hunting don, New York. 2000.
A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20 (2002) 269.
N. R. Hateka, Tests for Detecting Autocorrelation. Principles of Econometrics: An Introduction (Using R). SAGE Publications, 2010.
R. Benigni , C. Bossa, J. Chem. Inf. Model.48(2008) 971.
T. A. Craney, J. G. Surles, Qual. Eng. 14 (2002) 391.
D. G. Kleinbaum, Applied regression analysis and other multivariable methods; Australia, Belmont, CA: Brooks/Cole, 2008.
A. Fisher, Statistical Methods for Research Workers; Oliver and Boyd: Edinburgh, UK, 1925.
B. Reisfeld, A. N. Mayeno, Computational Toxicology: Volume 21, On the Development and Validation of QSAR Models, Springer: Science+Business Media, LLC, 2013.
S. Chatterjee, J. Simonoff, Handbook of Regression Analysis. John Wiley & Sons: New York, 2013.
M. Zhao, D. Wei, Exploring the ligand-protein networks in traditional Chinese medicine: current databases, methods and applications. In Advance in Structural Bioinformatics, Springer, Dordrecht, 2015.
G. C. Siontis, I. Tzoulaki, P. J. Castaldi, J. P. Ioannidis, J. P. J. Clin. Epidemiol. 68 (2015) 25.
F. K. Martens, J. G. Kers, A. C. Janssens, J. Clin. Epidemiol. 68 (2015) 25.
Y. Dodge, The Concise Encyclopedia of Statistics. Springer, 2008.
D. G. Kleinbaum, Applied regression analysis and other multivariable methods, Australia; Belmont, CA: Brooks/Cole, 2008.
V. Consonni, R. Todeschini, M. Pavan, P. Gramatica, J. Chem. Inform. Comput. Sci. 42 (2002) 693.
S. Sahoo, C. Adhikari, M. Kuanar, B.K. Mishra, Curr. Comput- Aided. Drug Des. 12 (2016) 181.
A. T. Balaban, From Chemical Topology to Three-Dimensional Geometry, A. T. Balaban (Ed.), Plenum Press, New York (NY), 1997.
B. Hu, Z. Kun Kuang , S. Y. Feng, D. Wang, S. B. He, D. Xin Kong, Molecules. 21 (2016) 1554.
J. Verma, V. M. Khedkar, E. C. Coutinho, Curr. Topics Med. Chem. 10 (2010) 95.
E. Estrada, I. Perdomo-López, J. J. Torres-Labandeira. J. Chem. Inform. Comput. Sci. 41 (2001) 1561.
A. Rybi ´nska-Fryca, A. Sosnowska, T. Puzyn, Materials. 13(2020) 2500.
N. Ahmadinejad, Shafiei, Comb. Chem. High. Throughput. Screen. 22 (2019) 387.
F. Ghaemdoost, F. Shafiei, Curr. Comput- Aided. Drug. Des. 6 (2020) 25.
H. Kušić, B. Rasulev, D. Leszczynska, J. Leszczynski, N. Koprivanac, Chemosphere. 75 (2009) 1128.
J. Schuur, J. Gasteiger, Anal. Chem. 69 (1997) 2398.
L. Saíz-Urra, Y. Pérez-Castillo, M. Pérez González, R. Molina Ruiz, M. Cordeiro,J.E.Rodríguez-Borges, X. García-Mera, QSAR & Comb. Sci. 28 (2009) 98.
L. Saíz-Urra, M. P. González, M. Teijeira, Biorg. Med. Chem. 14 (2006) 7347.
P. R. Duchowicz, M. G. Vitale, E. A. Castro, M. Fernández, J. Caballero, Biorg. Med. Chem. 15 (2007) 2680.
Z. Cheng, Y. Zhang, W. Fu, Eur. J. Med. Chem. 45 (2010) 3970.