ارزیابی کارایی منعقد کننده نانو ذره مگنتایت عامل دار شده در حذف برخی آلاینده ها از اکوسیستم های آبی
محمد امین اردلانی 1 , مهرداد چراغی 2
1 - دانشآموخته کارشناسی ارشد محیطزیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران
2 - گروه محیط زیست، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد همدان، همدان، ایران
الکلمات المفتاحية: اکسیژن مورد نیاز شیمیایی, اکسیژن مورد نیاز بیوشیمیایی, فاضلاب شهری, کل جامدات محلول, نانوذره مگنتایت عامل¬دار شده.,
ملخص المقالة :
با توجه به اهمیت آب در زندگی و همچنین مسایل محیط¬زیستی، تصفیه آن از اهمیت خاصی برخوردار می¬باشد. یکی از مهم¬ترین روش¬های تصفیه آب و فاضلاب، منعقدسازی آلاینده¬های موجود در آب به وسیله منعقدکننده¬ها می¬باشد.هدف از این مطالعه تعیین کارآیی فرآیند انعقاد جهت کاهش اکسیژن مورد نیاز بیوشیمیایی، اکسیژن مورد نیاز شیمیایی و کل جامدات محلول با استفاده از نانوذره مگنتایت عامل¬دار شده با 2، 4 دی¬نیتروفنیل¬هیدرازین به¬عنوان منعقدکننده می-باشد. بدین منظور، نانوذره مگنتایت عامل¬دار شده با 2، 4 دی¬نیتروفنیل¬هیدرازین به¬عنوان منعقد¬کننده برای حذف BOD، COD و TDS از فاضلاب شهر همدان به روش هم¬رسوبی شیمیایی سنتز شدند. خصوصیات ظاهری نانوذرات مغناطیسی با استفاده از میکروسکوپ الکترونی روبشی، دستگاه پراش پرتو ایکس و اسپکتروسکوپی بررسی شد. آزمایش¬ها به صورت ناپیوسته در مقیاس آزمایشگاهی انجام شد. اثر متغیرهای pH (11-2)، دوز منعقدکننده (80-10 میلی¬گرم بر لیتر)، زمان اختلاط (60-2 دقیقه) و زمان ته¬نشینی (50-10 دقیقه) بر راندمان حذف BOD، COD و TDS بررسی گردید. تصویر میکروسکوپ الکترونی روبشی نشان داد نانوذره مگنتایت عامل¬دارشده با 2، 4 دی¬نیتروفنیل¬هیدرازین در اشکال ظاهری کروی و در اندازه 20 تا 35 نانومتر هستند. نتایج به¬دست آمده نشان داد با زمان اختلاط 20 دقیقه، مقدار منعقدکننده 60 میلی¬گرم بر لیتر، زمان ته¬نشینی 30 دقیقه و pH برابر با 7، کارآیی حذف BOD، COD و TDS به 98، 94 و 2/99 درصد افزایش یافت. نانوذره مگنتایت عامل¬دار شده با 2، 4 دی¬نیتروفنیل¬هیدرازین می¬تواند به¬عنوان یک منعقدکننده موثر و در دسترس جهت حذف BOD، COD و TDS از فاضلاب شهری مورد استفاده قرار گیرد.
طاهریون، م. و معماریپور، ع. (1398) ارزیابی فرآیند انعقاد و لخته¬سازی در حذف فلزات سنگین از پساب شیمیایی مجتمع فولاد مبارکه. علوم و تکنولوژی محیط زیست، 21(6): 46-61.
محوی، ا.ح.، دهقانی، م.ه.، کیانی¬فیض¬آبادی، ق. و بارانی، م. (1391) ارزیابی عملکرد سه منعقدکننده مختلف جهت تصفیه شیرابه کارخانه کمپوست اصفهان. تحقیقات نظام سلامت، 8(1): 146-155.
Aboubaraka, A.E., Aboelfetoh, E.F. and Ebeid, E.-Z.M. (2017) Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water. Chemosphere, 181(2): 738-746.
Bachand, S.M., Kraus, T.E., Stern, D., Liang, Y.L., Horwath, W.R. and Bachand, P.A. (2019) Aluminum-and iron-based coagulation for in-situ removal of dissolved organic carbon, disinfection byproducts, mercury and other constituents from agricultural drain water. Ecological Engineering, 134(3): 26-38.
Can, O.T., Gengec, E. and Kobya, M. (2019) TOC and COD removal from instant coffee and coffee products production wastewater by chemical coagulation assisted electrooxidation. Journal of Water Process Engineering, 28(3): 28-35.
Cheng, Z., Yang, B., Chen, Q., Ji, W. and Shen, Z. (2018) Characteristics and difference of oxidation and coagulation mechanisms for the removal of organic compounds by quantum parameter analysis. Chemical Engineering Journal, 332(1): 351-360.
Dotto, J., Fagundes-Klen, M.R., Veit, M.T., Palacio, S.M. and Bergamasco, R. (2019) Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of cleaner production, 208(4): 656-665.
Eslami, H., Ehrampoush, M.H., Esmaeili, A., Salmani, M.H., Ebrahimi, A.A., Ghaneian, M.T., Falahzadeh, H. and Fouladi Fard, R. (2019) Enhanced coagulation process by Fe-Mn bimetal nano-oxides in combination with inorganic polymer coagulants for improving As (V) removal from contaminated water. Journal of Cleaner Production, 208(3):384-392.
Gan, Y., Wang, X., Zhang, L., Wu, B., Zhang, G. and Zhang, S. (2019) Coagulation removal of fluoride by zirconium tetrachloride: Performance evaluation and mechanism analysis. Chemosphere, 218(1): 860-868.
Guida, M., Mattei, M., Della Rocca, C., Melluso, G. and Meriç, S. (2007) Optimization of alum-coagulation/flocculation for COD and TSS removal from five municipal wastewater. Desalination, 211(1-3): 113-127.
Hu, R., Liu, Y., Zhu, G., Chen, C., Hantoko, D. and Yan, M. (2022) COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption. Journal of Water Process Engineering, 45(1): 102462.
Kim, K.-W., Shon, W.-J., Oh, M.-K., Yang, D., Foster, R.I. and Lee, K.-Y. (2019) Evaluation of dynamic behavior of coagulation-flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater. Nuclear Engineering and Technology, 51(3):738-745.
Li, N., Sheng, G.-P., Lu, Y.-Z., Zeng, R.J. and Yu, H.-Q. (2017) Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Research, 111(4): 204-212.
Liu, Y., Zhang, J., Huang, H., Huang, Z., Xu, C., Guo, G., He, H. and Ma, J. (2019) Treatment of trace thallium in contaminated source waters by ferrate pre-oxidation and poly aluminium chloride coagulation. Separation and Purification Technology, 227(3): 115663.
Mateus, G.A.P., Paludo, M.P., dos Santos, T.R.T., Silva, M.F., Nishi, L., Fagundes-Klen, M.R., Gomes, R.G. and Bergamasco, R. (2018) Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract. Journal of Environmental Chemical Engineering, 6(4): 4084-4092.
Shabanizadeh, H. and Taghavijeloudar, M. (2023) A sustainable approach for industrial wastewater treatment using pomegranate seeds in flocculation-coagulation process: Optimization of COD and turbidity removal by response surface methodology (RSM). Journal of Water Process Engineering, 53(7): 103651.
Sillanpää, M., Ncibi, M.C., Matilainen, A. and Vepsäläinen, M. (2018) Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190(2): 54-71.
Sobhanardakani, S. and Zandipak, R. (2015) 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples. Environmental Monitoring and Assessment, 187(7): 412-412.
Verma, A.K., Dash, R.R. and Bhunia, P. (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1):154-168.
Zandipak, R., Sobhan Ardakani, S. and Shirzadi, A. (2020) Synthesis and application of nanocomposite Fe3O4@SiO2@CTAB–SiO2 as a novel adsorbent for removal of cyclophosphamide from water samples. Separation Science and Technology, 55(3): 456-470.
Zhu, Y., Hu, J. and Wang, J. (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials, 221(1): 155-161.