پیش بینی قیمت بیت کوین با استفاده از الگوریتم های یادگیری ماشین
الموضوعات : اقتصاد کاربردیمیثم بشیری 1 , سیدحسین پاریاب 2
1 - کارشناسی ارشد مدیریت اجرایی، پژوهشگر موسسه مطالعات و پژوهشهای بارگانی (نویسنده مسئول).
2 - دانشجوی دکترا تجارت الکترونیکی، پژوهشگر موسسه مطالعات و پژوهشهای بارگانی
الکلمات المفتاحية: "یادگیری ماشین", "رمزارز", "پیش بینی", "بیت کوین",
ملخص المقالة :
بیتکوین معروفترین رمز ارز است که از فناوری زنجیره بلوکی استفاده میکند. در این پژوهش، مجموعه داده های مربوط به ده رمزارز مورد استفاده قرار گرفته و یک مجموعه داده جدید، با در نظر گرفتن قیمت نهایی هر رمز ارز و برای دستیابی به هدف تحقیق و تعیین اینکه چگونه جهت و صحتقیمت بیت کوین را می توان با استفاده از تکنیکهای داده کاوی پیشبینی کرد، تشکیل شده است. مهندسی ویژگی مشخص کرد که هر ده رمز ارز به شدت با یکدیگر ارتباط دارند. این کار با اجرای روش یادگیری نظارت شده انجام شده است که در آن از جنگل تصادفی، طبقهبندیبردار پشتیبان، گرادیان تقویتی، و شبکه عصبی در گروه طبقهبندی و از رگرسیون خطی، شبکه عصبی بازگشتی و رگرسیون گرادیان تقویتی استفاده شده است. در این پژوهش الگوریتم های ماشین بردار پشتیبان، جنگل تصادفی، گرادیان تقویتی و شبکه عصبی مقدار صحت 52.1675 درصد را ثبت کردند.
آقاخانی، کیارش و کریمی، عباس (1393). بررسی روشهای پیشبینی قیمت سهام در بازار بورس و معرفی روش بهینه، همایش ملی الکترونیکی دستاوردهای نوین در علوم مهندسی و پایه، اردبیل.
شیرزور علیابادی، زهرا، رمضانزاده، حمید (1399). بیتکوین و پیشبینی آینده آن، ششمین کنفرانس بینالمللی مهندسی صنایع و سیستمها، مشهد.
عبدی، نسرین، دلآرا، چنگیز، دانشجو، پریسا (1398). پیشبینی قیمت بیتکوین با استفاده از شبکه عصبی LSTM، نهمین کنفرانس ملی علوم و مهندسی کامپیوتر و فناوری اطلاعات، بابل.
Azevedo, A.I.R.L and M.F. Santos (2008). KDD, SEMMA and CRISP-DM: a parallel overview. IADS-DM.
Bergstra, J and Y. Bengio (2013). Random search for hyper-parameter optimization, Journal of machine learning research.
Brownlee, J (2014). Classification accuracy is not enough: More performance measures you can use, Machine Learning Mastery.
Chatfield, C and M. Yar (1988). Holt‐Winters forecasting: some practical issues, Journal of the Royal Statistical Society: Series D (The Statistician.
Chen, G.H, S. Nikolov and D. Shah (2013). A latent source model for nonparametric time series classification, in Advances in Neural Information Processing Systems.
CoinMarketCap (2020). Bitcoin Statistics.
Gartner, I, Gartner’s (2016). Hype Cycle for Emerging Technologies, August.
Georgoula, I, et al (2015). Using time-series and sentiment analysis to detect the determinants of bitcoin prices, Available at SSRN 2607167, Conference: 9th Mediterranean Conference on Information SystemsAt: Samos.
Greaves, A and B. Au (2015). Using the bitcoin transaction graph to predict the price of bitcoin, No Data. Joshi, R, Accuracy, precision (2016). recall & f1 score: Interpretation of performance measures, Retrieved April.
Madan, I, S. Saluja and A. Zhao (2015). Automated bitcoin trading via machine learning algorithms, URL. Matta, M, I. Lunesu and M. Marchesi (2015). Bitcoin Spread Prediction Using Social and Web Search Media, in UMAP Workshops.
Matta, M, I. Lunesu and M. Marchesi (2015). The predictor impact of Web search media on Bitcoin trading volumes, 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K).
McNally, S, J. Roche, and S. Caton (2018). Predicting the price of bitcoin using machine learning, in 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). Nakamoto, S and A (2008). Bitcoin, A peer-to-peer electronic cash system.
Obthong, M, et al (2020). A survey on machine learning for stock price prediction: algorithms and techniques.
Rumelhart, D.E, G.E. Hinton and R.J. Williams (1986). Learning representations by back-propagating errors.
Samuel, A.L (1959). Some studies in machine learning using the game of checkers, IBM Journal of research and development.
Shah, D and K. Zhang (2014). Bayesian regression and Bitcoin, 52nd annual Allerton conference on communication, control, and computing (Allerton).
Tang, Z, C. De Almeida, and P.A Fishwick (1991). Time series forecasting using neural networks vs. Box-Jenkins methodology, Simulation.
Velankar, S. S. Valecha and S. Maji (2018). Bitcoin price prediction using machine learning, 20th International Conference on Advanced Communication Technology (ICACT).
Wager, S. S. Wang and P.S. Liang (2013). Dropout training as adaptive regularization, in Advances in neural information processing systems.
Weigend, A.S, B.A. Huberman and D.E. Rumelhart (1990). Predicting the future: A connectionist approach, International journal of neural systems.
White, H (1988). Economic prediction using neural networks: The case of IBM daily stock returns.
Witten, I.H and E. Frank (2002). Data mining: practical machine learning tools and techniques with Java implementations, Acm Sigmod Record.
Yoon, Y and G. Swales (1991). Predicting stock price performance: A neural network approach, in Proceedings of the twenty-fourth annual Hawaii international conference on system sciences