بررسی حافظه بلندمدت و بکارگیری تجزیه موجک جهت بهبود عملکرد پیش بینی نوسانات بازار سهام
الموضوعات : دانش مالی تحلیل اوراق بهادارشمس اله شیرین بخش 1 , اسماعیل نادری 2 , نادیا گندلی علیخانی 3
1 - ندارد
2 - مسئول مکاتبات
3 - ندارد
الکلمات المفتاحية: پیش بینی, بورس, حافظه بلندمدت, تجزیه موجک, مدلARFIMA, مدل.FIGARCH,
ملخص المقالة :
شاخصهای بازارهای مالی، دارای تناوب و تلاطم بسیار زیادی بوده که این امر سبب شکلگیری نوعخاصی از نامانایی گشته که به آن نامانایی کسری اطلاق میگردد. این ویژگی موجبات شکلگیری حافظهبلندمدت در ایننوع از سریهای زمانی را فراهم میآورد. از اینرو، این مطالعه ضمن بررسی وجود ویژگیحافظه بلندمدت در سری بازدهی بورس، به پیشبینی نوسانات این شاخص به کمک مدلهای مبتنی بر حافظهبلندمدت و نیز تجزیه موجک، میپردازد. جهت رسیدن به این هدف، از دادههای سریزمانی روزانه شاخصقیمت و بازده نقدی بورس اوراق بهادار تهران، طی دوره زمانی پنجم فروردین 1388 تا هجدهم اردیبهشتماه 1391 استفاده شده است. بر پایه نتایج این پژوهش، وجود ویژگی حافظه بلندمدت در این سری موردتأیید قرار میگیرد و بر این اساس بهترین مدل جهت تبیین رفتار نوسانات سری مذکور، مدل غیرخطیمیباشد. همچنین، جهت پیشبینی نوسانات شاخص بازدهی بورس، از ARFIMA(1,2)-FIGARCH(BBM)مدل مذکور بر اساس سطح دادهها و نیز دادههای تجزیه شده، استفاده گردید که بر مبنای معیارهای خطایمدل مبتنی بر دادههای تجزیه شده با تکنیک موجک از نتایج قابل قبولتری ،RMSE و MSE پیشبینیبرخوردار بوده است.