آرایه روش مبتنی بر گرادیان مزدوج برای آموزش شبکه عصبی تصمیم
الموضوعات :محدثه نادرشاهی 1 , اعظم دخت صفی صمغ آبادی 2 , رضا توکلی مقدم 3
1 - دانشجوی دکتری، گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران
2 - گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه پیام نور، تهران، ایران
3 - استاد، دانشکده مهندسی صنایع، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران
الکلمات المفتاحية: Decision Neural Network traini, conjugate gradient method, multi-objective decision-makin, utility function estimation,
ملخص المقالة :
شبکه عصبی تصمیم یک رویکرد جدید برای حل مسائل تصمیمگیری چندهدفه مبتنی بر شبکههای عصبی مصنوعی میباشد. با بکارگیری روشهای ارزیابی غیردقیق، ظرفیت یادگیری در این شبکه افزایش یافته و حجم مجموعه داده آموزشی کاهش یافته است. لذا شرایط برای تصمیمگیرندگان تسهیل شده است. روش موجود برای آموزش پارامترهای این شبکه مبتنی بر روش گرادیان است. یکی از محدودیتهای روش فعلی، سرعت همگرایی آن است. در این مقاله، جهت افزایش کارآیی شبکهعصبی تصمیم، روشی مبتنی برگرادیان مزدوج برای آموزش این شبکه توسعه داده شدهاست. نکته ویژه در آموزش شبکه عصبی تصمیم این است که ساختار و پارامترهای دو زیر شبکه پرسپترون چند لایه موجود در شبکه عصبی تصمیم در فرآیند آموزش یکسان باقی بماند. کارایی روش پیشنهادی در حل مسئله تصمیمگیری چند هدفه با توابع مطلوبیت متعدد خطی و غیرخطی ارزیابی میشود. نتایج روش پیشنهادی با برخی روشهای مشابه مقایسه شده و نشان میدهد که در روش پیشنهادی، همگرایی نسبت به روش قبلی سریعتر بوده و نتایج مطلوبتر هستند.
مراجع
[1] Chen, J. & Lin, S, A Neural Network Approach- Decision Neural Network (DNN) for preference assessment, IEEE Trans. Syst. Man, Cyber net, 2004, vol 34, No. 2, pp.219-225.
[2] Wang, J., & Malakooti, B., A feed forward neural network for multiple criteria decision making, Computer. Oper. Res, 1992, Vol. 19, No. 2, pp. 151-167.
[3] Keeney, R. L., Raffia, H, Decisions with multiple objectives. Cambridge Univ. Press, U.K., 1993.
[4] Bell, D. E., Consistent assessment procedures using conditional utility functions. Oper. Res, 1979, vol 27.PP. 1054-1066.
[5] Dyer, J. S., & Sarin, R. K., “Measurable multi attribute value functions”, Ops Res , 1979, vol. 27, PP. 810-822.
[6] Farquhar, P. H., “A fractional hypercube decomposition theorem for multi attribute utility functions”, Ops Res. 1975, Vol.. 23, pp. 941-967.
[7] Fishburn, P. G., “von Neumann Morgenstern utility functions on two attributes”, Ops Res , 1974, Vol. 22, pp. 35-45.
[8] Kirkwood, C. W., “Parametrically dependent preferences for multi attributed consequences”, Ops Res, 1976, Vol. 24, pp. 92-103.
[9] Benayoun,R, de Montgolfier,J, Tergny,J and Laritchev,O,I, Linear programming with multiple objective functions: Step method (STEM), Math. Program., 1971, vol. 1, pp. 366–387.
[10] Geoffrion, M, Dyer, J, S and A. Feinberg, An interactive approach for multi-criterion optimization, with an application to the operation of an academic department, Manage. Sci., 1972, vol. 19, no. 4, pp. 357–368.
[11] Gardiner,L , R and Steuer, R , E, Unified interactive multiple objective programming, Eur. J. Oper. Res., 1994, vol. 74, pp. 391–406.
[12] Sun, M, Stam, A, Steuer, R. E., Interactive multiple objective programming problems using Tchebycheff programs and artificial neural networks. Computer & Oper. Res, 2000, 27, PP.601-620.
[13] Sun, M, Stam, A , Steuer, R. E., “Solving multiple objective programming problems using feed-forward artificial neural networks: The interactive FFANN procedure,” Manage. Sci , 1996, vol. 42, No .6, pp. 835–849.
[14] Malakooti, B and Zhou, Y, Feed-forward artificial neural networks for solving discrete multiple criteria decision making problems, Manage.Sci., , 1994, vol. 40, No. 11, pp. 1542–1560.
[15] R. Hecht-Nielsen, “Theory of the backpropagation neural networks,” in Proc. Int. Joint Conf. Neural Networks, 1989و pp. 593–611.
[16] Shih, H.S., Wen, U.P., Lee, E.S., Lan, K.M., Hsiao, H.C., A neural network approach to multi objective and multilevel programming problems, comput & math, 2004, vol. 48, pp. 95-108.
[17] Huang, H.Z, Tian, Z, J. ZUO, M, Intelligent interactive multi objective optimization method and its application to reliability optimization, IIE Transactions 2005, 37, 983–993.
[18] Gen, M, Ida, K. and Kobuchi, R, Neural network technique for fuzzy multiobjective linear programming, computer and industrial engineering”, 1998, vol 35, NO. 3, PP. 543-546.
[19] Golmohammadi, D, Neural network application for fuzzy multi-criteria decision making problems, Int. J. production Economics131, 2011, pp. 490–504.
[20] Golmohammadi, D, A neural network decision-making model for job-shop scheduling, International Journal of Product Res, 2013, Vol. 51, No. 17, pp. 5142–5157.
[21] Chen, J. & Lin, S., “An interactive neural network-based approach for solving multiple criteria decision-making problems”, Decision support systems, 2003, vol. 36, pp. 137-146.
[22] Gal, T., “Nonessential objective within network approaches for MCDM”, European Journal of Operation Research, 2006, vol. 168, pp. 584-592.
[23] Singh, R.K., Choudhury, A.K., Tiwari, M.K., Shankar, R, “Improved Decision Neural Network IDNN) based consensus method to solve a multi-objective group decision making problem”, Advanced Engineering Informatics, 2007, vol 21, pp. 335-348.