صفر شدن تابعگون Ext و قضیه پوچساز فالتینگز برای مدولهای کوهن-مکالی نسبی
الموضوعات :مریم مست ظهوری 1 , خدیجه احمدی آملی 2 , سعادتاله فرامرزی 3
1 - دانشجوی دکتری گروه ریاضی، دانشگاه پیام نور، تهران، ایران
2 - استادیار، گروه ریاضی، دانشگاه پیام نور، تهران، ایران
3 - استادیار، گروه ریاضی، دانشگاه پیام نور، تهران، ایران
الکلمات المفتاحية: functors, Local cohomology modules, relative Cohen-Macauly filtere, Faltings’ Annihilator Theorem,
ملخص المقالة :
فرض کنیم یک حلقه جابجایی و نوتری، a و b ایدهآلهایی از R و M یک R-مدول متناهی باشد. صفر شدن و کوهن-مکالی نسبی بودن تابعگون Ext را روی مدولهای کوهن-مکالی نسبی صافی شده نسبت به ایدهآل a (به اختصار RCMF) مطالعه کردهایم. نشان دادهایم .....
[1] Kh. Ahmadi Amoli, Filters regular sequences, local cohomology modules and singular sets, PhD. Thesis, (1996).
[2] M. Asgharzadeh, K. Divaani-Aazar and M. Tousi, The finiteness dimension of local cohomology modules and its dual notion, J. Pure Appl. Algebra, 213 (2009) 321-328.
[3] A. Atazadeh, M. Sedghi, and R. Naghipour, Cohomological dimension filtration and annihilators of top local cohomology modules, Colloquium Mathematicum, 139 (2015) 25-35.
[4] M. Brodmann, A rigidity result for highest order local cohomology modules, Arch. Math. 79 (2002) 87-92.
[5] M. P. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, (1998).
[6] N. T. Coung, On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing complexes, Math. Proc. Camb. Phil. Soc. (1991) 109, 479-488.
[7] K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002) 3537-3544.
[8] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra 16 (1988) 755-779.
[9] Faltings. G. Über die Annulatoren lokaler Kohomologiegruppen, Arch. Math. (Basel) 30 (1978), no. 5, 473-476.
[10] H. B. Foxby, Gorenstein modules and related modules. Math. Scand 31 (1972) 267-284.
[11] R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. 88 (1968) 403-450.
[12] M. Hellus and P. Schenzel, Notes on local cohomology and duality, Journal of Algebra, 401 (2014) 48-61.
[13] J. Herzog, E. Sbarra, Sequentially Cohen-Macaulay modules and local cohomology, In: Algebra, Arithmetic and Geometry, Part I, II. Tata Inst. Fund. Res. Stud. Math 16 (2000).
[14] M. Mast Zohouri, Kh. Ahmadi Amoli, S. O. Faramarzi, Relative Cohen-Macaulay filtered modules with a view toward relative Cohen-Macaulay modules, Math. Reports 20(70) 3 (2018), 301-318.
[15] M. Mast Zohouri, Local cohomology modules and relative Cohen-Macaulayness. Discuss. Math. Gen. Algebra Appl 38 (2018) 197–205.
[16] A. A. Mehrvarz, R. Naghipour, M. Sedghi. Faltings’ local-global principal for the finiteness of local cohomology modules over Noetherian rings, Comm. Algebra 43 (11) (2015) 953-958.
[17] M. Rahro Zargar, Some duality and equivalence results, arXiv:1308.3071v2 [math.AC].
[18] P. Schenzel, On the use of local cohomology in algebra and geometry, in:, Lectures at the summer school of commutative Algebra and Algebraic Geometry, Birkha, Basel, Ballaterra, (1996).
[19] P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand. 92 (2) (2003) 161-180.
[20] N. V. Trung, Absolutely superficial sequences, Math. Proc. Camb. Phil. Soc. ,93 (1983) 35-47.
[21] W. V. Vasconcelos, Divisor theory in module categories, North-Holland Math. stud., vol. 14, North HollandPublishing Co., Amsterdam, (1974).