طراحی یک مدل شبکه عصبی برای پیش بینی امکان استخدام مدیران بر اساس داده های تاریخی و یادگیری ماشین : مطالعه موردی مدیران حج تمتع سازمان حج و زیارت کشور
الموضوعات :مهران فرشید 1 , امیررضا نقش 2 , بیتا یزدانی 3
1 - گروه مدیریت، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - گروه مدیریت، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران
3 - گروه مدیریت، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
الکلمات المفتاحية: سازمان حج و زیارت, مدیران حج تمتع, شبکه عصبی مصنوعی, یادگیری ماشین,
ملخص المقالة :
Based on the concepts of data culture, this article deals with the prediction and intelligent selection of Hajj Tamattu managers in the Hajj and Pilgrimage Organization of the Islamic Republic of Iran to provide services to Hajj Tamattu pilgrims. The selection of managers of any organization is one of the influential links in the performance of that organization. In the organization of Hajj and pilgrimage, this issue is of particular importance and plays a significant role in the satisfaction of pilgrims and the quality of pilgrimage trips. Since this selection is done every year in the organization of Hajj and Pilgrimage, according to the multiple criteria affecting the selection of managers and the categories made in their average points by the Organization of Hajj and Pilgrimage, historical data review and use One of them can be a suitable attitude for selecting and classifying new managers. On the other hand, the scores of former managers change every year and their classification may change again. In this article, based on several machine learning models, the problem of selecting Hajj managers in the country's Hajj and Pilgrimage organization has been solved. Also, the validation of these models is determined based on the confusion matrix. Since the selection of Hajj managers depends on different indicators, therefore, it is necessary to decide how to integrate this indicator
1. شاه علی زاده کلخوران، محمد، ضیایی، محمدوحید، و الوانی، سیدمهدی. (1387). مدل انتخاب مدیران با متدولوژی AHP-DEMATEL. پژوهشگر (مدیریت) (Journal of Industrial Strategic Management)، 5(12)، 21-32
2. فرشید, مهران, حسین زاده لطفی, فرهاد, نقش, امیررضا, & یزدانی, بیتا. (1401). تحلیل عوامل مؤثر بر انتخاب مدیران حج تمتع با استفاده از روش دیمتل. پژوهشنامه حج و زیارت, 7(4), 103-134.
3. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V. K. (2018). The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164.
4. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
5. Huang, D. S. (1999). Radial basis probabilistic neural networks: Model and application. International Journal of Pattern Recognition and Artificial Intelligence, 13(07), 1083-1101.
6. Li, J., Ren, A., Li, Z., Ding, C., Yuan, B., Qiu, Q., & Wang, Y. (2017, January). Towards acceleration of deep convolutional neural networks using stochastic computing. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC) (pp. 115-120). IEEE.
7. Mao, Q., Chen, J., Lv, J., Guo, M., & Xie, P. (2023). Selection of plastic solid waste treatment technology based on cumulative prospect theory and fuzzy DEMATEL. Environmental Science and Pollution Research, 30(14), 41505-41536.
Mitchell, T. M. (2007). Machine learning (Vol. 1). New York: McGraw-hill.
8. Ozcalici, M., & Bumin, M. (2022). Optimizing filter rule parameters with genetic algorithm and stock selection with artificial neural networks for an improved trading: The case of Borsa Istanbul. Expert Systems with Applications, 208, 118120.
9. Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-2329.
10. Yan, H., Yang, Y., Lei, X., Ye, Q., Huang, W., & Gao, C. (2023). Regret Theory and Fuzzy-DEMATEL-Based Model for Construction Program Manager Selection in China. Buildings, 13(4), 838.
11. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J. (2015, February). Optimizing FPGA-based accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable gate arrays (pp. 161-170).