روشی جدید مبتنی بر الگوریتم های تکاملی و عددی برای حل معادلات لین-اِمدن
الموضوعات :سید رضا میرشفائی 1 , هاشم صابری نجفی 2 , اسماعیل خالقی 3 , امیرحسین رفاهی شیخانی 4
1 - گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
2 - گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
3 - گروه مهندسی مکانیک، دانشکده مکانیک، دانشگاه گیلان، رشت، ایران
4 - گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
الکلمات المفتاحية: Numerical methods, Stellar structure, Genetic programming, Lane-Emden differential equations,
ملخص المقالة :
با پیشرفت کامپیوترها و توسعه صنعت تولید پردازنده ها، امروزه از الگوریتم های تکاملی نظیر شبکه های عصبی، الگوریتم ژنتیک و برنامه سازی ژنتیکی در حوزه های مختلف مهندسی استفاده می گردد. اما در حوزه ریاضیات کمتر از چنین روش هایی برای حل مسایل خاصی نظیر معادلات دیفرانسیل استفاده شده است. ایده موجود در این مطالعه ارائه روشی جدید و نوآورانه در حوزه ریاضیات کاربردی و اخترفیزیک است که مطابق با آن، بتوان روش های ریاضی را با روش های ابتکاری که پیش تر اکثراً در مسایل کاربردی و مهندسی از آن بهره گرفته می شد، تلفیق نموده و از آن برای حل معادلات دیفرانسیل مرتبه دوم غیرخطی لین-امدن که برآمده از فیزیک اجرام آسمانی و توصیف کننده ساختار ستاره ای و تئوری کره های گازی پلی تروپیک است، استفاده نمود. در این راستا یک روش ترکیبی جدید (GPNLE) مبتنی بر برنامه سازی ژنتیکی و روش عددی رونگه-کوتا برای تولید مدل های ریاضی با دقتی مطلوب از جواب معادلات لین- امدن معرفی شده است. صحت کارایی و انعطاف پذیری این روش ترکیبی بر اساس آزمایش های عددی انجام شده روی دسته هایی خاص و پرکاربرد از این نوع از معادلات مورد بررسی و قیاس با یک روش قدرتمند بر پایه چندجمله ای های چبیشف، قرار گرفته و نتایج مطلوبی برای نشان دادن اهداف مقاله حاصل شده است.
1.Powell, C.S., J. Homer Lane and the internal structure of the Sun. Journal for the History of Astronomy, 1988. 19(3): p. 183-199.
2.Maciel, W.J., Introduction to stellar structure. 2015: Springer.
3.Chandrasekhar, S. and S. Chandrasekhar, An introduction to the study of stellar structure. Vol. 2. 1957: Courier Corporation.
4.Duggan, R. and A. Goodman, Pointwise bounds for a nonlinear heat conduction model of the human head. Bulletin of mathematical biology, 1986. 48(2): p. 229-236.
5.Reger, K. and R. Van Gorder, Lane-Emden equations of second kind modelling thermal explosion in infinite cylinder and sphere. Applied Mathematics and Mechanics, 2013. 34(12): p. 1439-1452.
6.Wazwaz, A.-M., Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst by the variational iteration method. Chemical Physics Letters, 2017. 679: p. 132-136.
7.Horedt, G., Exact solutions of the Lane-Emden equation in N-dimensional space. Astronomy and Astrophysics, 1986. 160: p. 148-156.
8.Ramos, J., Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method. Chaos, Solitons & Fractals, 2008. 38(2): p. 400-408.
9.Bender, C.M., et al., A new perturbative approach to nonlinear problems. Journal of mathematical Physics, 1989. 30(7): p. 1447-1455.
10.He, J.-H., Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and computation, 2003. 135(1): p. 73-79.
11.Singh, M. and A.K. Verma, An effective computational technique for a class of Lane–Emden equations. Journal of Mathematical Chemistry, 2016. 54(1): p. 231-251.
12.Van Gorder, R.A. and K. Vajravelu, Analytic and numerical solutions to the Lane–Emden equation. Physics Letters A, 2008. 372(39): p. 6060-6065.
13.He, J.-H., Variational iteration method–a kind of non-linear analytical technique: some examples. International journal of non-linear mechanics, 1999. 34(4): p. 699-708.
14.Wazwaz, A.-M., A new algorithm for solving differential equations of Lane–Emden type. Applied mathematics and computation, 2001. 118(2-3): p. 287-310.
15.Aydinlik, S. and A. Kiris, A high-order numerical method for solving nonlinear Lane-Emden type equations arising in astrophysics. Astrophysics and Space Science, 2018. 363(12): p. 1-12.
16.Bildik, N. and S. Deniz, Comparative study between optimal homotopy asymptotic method and perturbation-iteration technique for different types of nonlinear equations. Iranian Journal of Science and Technology, Transactions A: Science, 2018. 42(2): p. 647-654.
17.Bhrawy, A.H. and A.S. Alofi, A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations. Communications in Nonlinear Science and Numerical Simulation, 2012. 17(1): p. 62-70.
18.Yang, C. and J. Hou, A numerical method for Lane-Emden equations using hybrid functions and the collocation method. Journal of Applied Mathematics, 2012. 2012.
19.Aminikhah, H. and S. Kazemi, On the numerical solution of singular Lane–Emden type equations using cubic B-spline approximation. International Journal of Applied and Computational Mathematics, 2017. 3(2): p. 703-712.
20.Pandey, R.K. and N. Kumar, Solution of Lane–Emden type equations using Bernstein operational matrix of differentiation. New Astronomy, 2012. 17(3): p. 303-308.
21.Balaji, S., A new Bernoulli wavelet operational matrix of derivative method for the solution of nonlinear singular Lane–Emden type equations arising in astrophysics. Journal of Computational and Nonlinear Dynamics, 2016. 11(5).
22.Singh, R., H. Garg, and V. Guleria, Haar wavelet collocation method for Lane–Emden equations with Dirichlet, Neumann and Neumann–Robin boundary conditions. Journal of Computational and Applied Mathematics, 2019. 346: p. 150-161.
23.Banzhaf, W., Artificial intelligence: Genetic programming. International encyclopedia of the social & behavioral sciences, 2nd edn. Elsevier, Oxford, 2015: p. 41-45.
24.Koza, J.R., Genetic Programming, On the Programming of Computers by Means of Natural Selection. A Bradford Book. MIT Press, 1992.
25.Al-Hayani, W., L. Alzubaidy, and A. Entesar, Solutions of Singular IVP’s of Lane-Emden type by Homotopy analysis method with Genetic Algorithm. Applied Mathematics & Information Sciences, 2017. 11(2): p. 407-416.
26.Iba, H., Inference of differential equation models by genetic programming. Information Sciences, 2008. 178(23): p. 4453-4468.
27.Lobão, W.J., D.M. Dias, and M.A.C. Pacheco. Genetic programming and automatic differentiation algorithms applied to the solution of ordinary and partial differential equations. in 2016 IEEE Congress on Evolutionary Computation (CEC). 2016. IEEE.
28.Chauhan, V. and P.K. Srivastava, Computational techniques based on Runge-Kutta method of various order and type for solving differential equations. International Journal of Mathematical, Engineering and Management Sciences, 2019. 4(2): p. 375.
29.Bukhari, A.H., et al., Design of intelligent computing networks for nonlinear chaotic fractional Rossler system. Chaos, Solitons & Fractals, 2022. 157: p. 111985.
30.D’Ambrosio, R. and C. Scalone, Two-step Runge-Kutta methods for stochastic differential equations. Applied Mathematics and Computation, 2021. 403: p. 125930.
31.Jackson, D. Promoting phenotypic diversity in genetic programming. in International Conference on Parallel Problem Solving from Nature. 2010. Springer.
32.Zhang, F., et al., Genetic Programming for Production Scheduling. 2021: Springer.
33.Iba, H., Swarm Intelligence and Deep Evolution: Evolutionary Approach to Artificial Intelligence. 2022: CRC Press.
34.Jamali, A., et al., Modelling and prediction of complex non-linear processes by using Pareto multi-objective genetic programming. International Journal of Systems Science, 2016. 47(7): p. 1675-1688.
35.Iba, H., Y. Hasegawa, and T.K. Paul, Applied genetic programming and machine learning. 2009: cRc Press.
36.Banzhaf, W., et al., Genetic Programming Theory and Practice XVIII. 2022: Springer.
37.Lavinas, Y., et al. Experimental analysis of the tournament size on genetic algorithms. in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2018. IEEE.
38.Searson, D.P., GPTIPS 2: an open-source software platform for symbolic data mining, in Handbook of genetic programming applications. 2015, Springer. p. 551-573.
39.Deb, K., et al., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 2002. 6(2): p. 182-197.
40.Hichar, S., et al., Application of nonlinear Bratu's equation in two and three dimensions to electrostatics. Reports on mathematical physics, 2015. 76(3): p. 283-290.
41.Kilic, M., et al., 11–12 Gyr old white dwarfs 30 pc away. Monthly Notices of the Royal Astronomical Society: Letters, 2012. 423(1): p. L132-L136.