بهینه سازی مسیریابی شبکه توزیع کالا با استفاده از سیستم حمل و نقل هوشمند
الموضوعات :حسن دانشور 1 , صادق نیرومند 2 , امید بویرحسنی 3 , عبداله هادی وینچه% 4
1 - گروه مهندسی صنایع، برنامه ریزی و مدیریت تولید، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - گروه مهندسی صنایع، مرکز آموزش عالی فیروزآباد، دانشگاه صنعتی شیراز، شیراز، ایران
3 - گروه مهندسی صنایع، برنامه ریزی و مدیریت تولید، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
4 - گروه ریاضی، دانشکده علوم پایه، واحد خوراسگان، دانشگاه آزاد اسلامی، اصفهان، ایران
الکلمات المفتاحية: الگوریتم خوشه بندی, سیستم حمل و نقل هوشمند, مسیریابی شبکه توزیع کالا, الگوریتم فراابتکاری,
ملخص المقالة :
با توجه به اینکه یافتن مسیر مناسب در ساعات روز و پرترافیک شهر با محدودیت های تردد ایجاد شده معضل بزرگی است که نهتنها باعث عملکرد غیر بهینه در شبکههای توزیع میشود بلکه خسارات جبرانناپذیر زیستمحیطی نیز به جامعه وارد میکند، این پژوهش توجه خود را به بهبود مسیریابی شبکه توزیع کالا با استفاده از سیستم حمل و نقل هوشمند معطوف نموده است؛ در همین راستا پس از مدل سازی مسئله در قالب توسعه مسئله مسیریابی وسایل نقلیه با در نظر گرفتن محدودیت تردد و پنجره زمانی و NP-hard بودن آن، با استفاده از ترکیب الگوریتم های فراابتکاری ژنتیک و بهینه سازی ازدحام ذرات مسئله حل و مسیر بهینه و تعداد وسایل نقلیه مورد نیاز جهت ارسال کالا مشخص می شود. بر همین اساس ابتدا مکان مشتریان با استفاده از الگوریتم خوشه بندی دسته بندی و زیر خوشه هایی باتوجه به پنجره زمانی تحویل ایجاد میشود، سپس یک واسط کاربری، مبدا و مقصد ارائه شده توسط کاربر را به عنوان وروردی دریافت می کند، این واسط با ارتباط با نقشه گوگل مسیرهای موجود بین مبدا و مقصد را دریافت می کند. مسیرهای پیشنهادی با استفاده از الگوریتم های پیشنهادی ایجاد و با استفاده از پروتکل های مسیریابی شبکه ادهاک خودرو اتفاقات مسیرها مانند ترافیک اعلام و درصورت نیاز وسیله نقلیه از مسیر جایگزین تردد میکند. روش پیشنهادی از نظر کمینه کردن مسافت و تعداد وسایل نقلیه نتایج بهتری نسبت به جوابهای بهینه داشته است.
[1] Dehbari, S., and Pourrosta, A., and Naderi Bani, M., and Ghobadian, A., and Tavakoli Moghadam, R. (1391). Multi-purpose transport routing with potential service time and fuzzy demand under time window constraints. Operations Research in Its Applications (Applied Mathematics), 9(4 (35 consecutive)), 85-106.
https://www.sid.ir/fa/journal/ViewPaper.aspx?id=189175(Persian)
[2] Khademi Zare, Hassan, Taqwa, & Lotfi. (2018). The problem of routing multi-seat vehicles and multi-product with fuzzy time window, multiple goals and flexibility in determining the seat. International Journal of Industrial Engineering and Production Management, 28 (4), 559-571. (Persian)
[3] Rahimi Amir Massoud, Rajabi Tawarat, Vahid (2015). Provide a hybrid algorithm to solve the vehicle routing problem with the simultaneous receipt and delivery of goods. Amirkabir Scientific Research Journal. Civil and Environmental Engineering. 385 to 375, Page 1395, Winter 4, No. 48 Volume. (Persian)
[4] Jafari, Azizaleh, Tavakoli Moghadam, Reza, Forghani, Mohsen, Arab, Rahmat. (1395). Mathematical modeling for the problem of routing vehicles with reverse transport and solving it with multiple ant colony algorithm. Production and Operations Management, 7 (1), 215-234. doi: 10.22108 / jpom.2016.20920(Persian)
[5] Hosseini, S., and Hassani, A. (1397). Modeling and solving the problem of vehicle routing (VRP) in the supply chain distribution sector, taking into account traffic restrictions (technical note). Industrial Engineering and Management (Sharif Special Engineering Sciences), 34-1 (1/1), 147-155.
https://www.sid.ir/fa/journal/ViewPaper.aspx?id=484626(Persian)
[6] Mehdizadeh, Ismail, & Mirkhanzadeh. (2016). Optimal routing in the milkshake logistics problem with time constraints and incompatible demand. International Journal of Industrial Engineering and Production Management, 26 (4), 455-471. (Persian)
[7] Ebadati Mehdi. (1392). Presenting an Algorithm for Integrated Location-Routing Problem (Comparison with Other Repetitive and Hierarchical Methods) Master Thesis. (Persian)
[8] Mahjoubnia, Meysam, Dabiri, Noureddin, Bozorgi Amiri, Ali. (1396). Introducing a new model of location-routing-green inventory under uncertainty. Journal of Industrial Engineering Research in Production Systems, 5 (10), 99-115. doi: 1022084 / ier.2017.9761.1467(Persian)
[9] Eidi, Alireza, Alavi, Seyed Hadi. (1394). Periodic reversing of vehicles in reverse logistics with eligible customers. Scientific Journal of Supply Chain Management, 17 (49), 84-93. (Persian)
[10] Nadizadeh Ardakani Ali. (. 2014) Government - Ministry of Science, Research, and Technology - Yazd University - Faculty of Engineering. 1393. PhD Development of a model for the problem of locating-routing vehicles in the supply chain in a dynamic state with an uncertainty approach
[11] Hosseini, Seyed Mohammad Hassan, Khalaji Aliaei, Soheila. (1394). Mathematical modeling of the location-routing problem taking into account the capacity, diversity and limitations of transportation and development of a solution model based on the ant colony algorithm. Journal of Industrial Engineering Research in Production Systems, 3 (5), 91-105.
[12] Brown, M. (2020). Smart Transport. In Smart Cities in Application (pp. 69-83). Springer, Cham.
[13] Chang, Y. C., & Lee, C. Y. (2004). Machine scheduling with job delivery coordination. European Journal of Operational Research, 158(2), 470-487.
[14] Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & industrial engineering, 51(1), 196-215.
[15] Saeedi Mehrabad, M., Aazami, A., & Goli, A. (2017). A location-allocation model in the multi-level supply chain with multi-objective evolutionary approach. Journal of Industrial and Systems Engineering, 10(3), 140-160.
[16] Bank, M., Mazdeh, M., & Heydari, M. (2020). Applying meta-heuristic algorithms for an integrated production-distribution problem in a two level supply chain. Uncertain Supply Chain Management, 8(1), 77-92.
[17] Djatna, T., & Amien, G. (2020). Bi-objective freight scheduling optimization in an integrated forward/reverse logistic network using non-dominated sorting genetic algorithm-II. Decision Science Letters, 9(1), 91-106.
[18] Parkhi, S., Jagadeesh, D., & Kumar, R. A. (2014). A study on transport cost optimization in retail distribution. Journal of Supply Chain Management Systems, 3(4), 31-38.
[19] Tseng, Y. Y., Yue, W. L., & Taylor, M. A. (2005, October). The role of transportation in logistics chain. Eastern Asia Society for Transportation Studies
[20] Hiassat, A., Diabat, A., & Rahwan, I. (2017). A genetic algorithm approach for location-inventory-routing problem with perishable products. Journal of manufacturing systems, 42, 93-103.
[21] Rohmer, S. U. K., Claassen, G. D. H., & Laporte, G. (2019). A two-echelon inventory routing problem for perishable products. Computers & Operations Research, 107, 156-172.
[22] Azad, N., Aazami, A., Papi, A., & Jabbarzadeh, A. (2019, July). A two-phase genetic algorithm for incorporating environmental considerations with production, inventory and routing decisions in supply chain networks. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 41-42).
[23] Manavizadeh, N., Shaabani, M., & Aghamohamadi, S. (2019). Designing a green location routing inventory problem considering transportation risks and time window: a case study. Journal of Industrial and Systems Engineering, 0-0.
[24] Fazayeli, S., Eydi, A., & Kamalabadi, I. N. (2018). Location-routing problem in multimodal transportation network with time windows and fuzzy demands: Presenting a two-part genetic algorithm. Computers & Industrial Engineering, 119, 233-246.
[25] Rahimi, M., Baboli, A., & Rekik, Y. (2017). Multi-objective inventory routing problem: A stochastic model to consider profit, service level and green criteria. Transportation Research Part E: Logistics and Transportation Review, 101, 59-83.
[26] Nikfarjam, A., & Moosavi, A. (2020). An integrated (1, T) inventory policy and vehicle routing problem under uncertainty: an accelerated Benders decomposition algorithm. Transportation Letters, 1-22.
[27] Saragih, N. I., Bahagia, N., & Syabri, I. (2019). A heuristic method for location-inventory-routing problem in a three-echelon supply chain system. Computers & Industrial Engineering, 127, 875-886.
[28] Tavakkoli-Moghaddam, R., Forouzanfar, F., & Ebrahimnejad, S. (2013). Incorporating location, routing, and inventory decisions in a bi-objective supply chain design problem with risk-pooling. Journal of Industrial Engineering International, 9(1), 19.
[29] Zhu, L., & Hu, D. (2019). Study on the vehicle routing problem considering congestion and emission factors. International Journal of Production Research, 57(19), 6115-6129.
[30] Chen, D., Zhang, X., Gao, D., Gao, K., Wen, M., & Huang, Z. (2020, October). Logistics Distribution Path Planning Based on Fireworks Differential Algorithm. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2797-2802).
[31] Gómez-Montoya, R. A., Cano, J. A., Cortés, P., & Salazar, F. (2020). A Discrete Particle Swarm Optimization to Solve the Put-Away Routing Problem in Distribution Centres. Computation, 8(4), 99.
[32] Qin, G. Y., Tao, F. M., & Li, L. X. (2019, December). A Green Vehicle Routing Optimization Model with Adaptive Vehicle Speed Under Soft Time Window. In 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1-5). IEEE.
[33] Bouk, S. H., Ahmed, S. H., Kim, D., & Song, H. (2017). Named-data-networking-based ITS for smart cities. IEEE Communications Magazine, 55(1), 105-111.
[34] Menouar, H., Guvenc, I., Akkaya, K., Uluagac, A. S., Kadri, A., & Tuncer, A. (2017). UAV-enabled intelligent transportation systems for the smart city: Applications and challenges. IEEE Communications Magazine, 55(3), 22-28.
[35] Gohar, M., Muzammal, M., & Rahman, A. U. (2018). SMART TSS: Defining transportation system behavior using big data analytics in smart cities. Sustainable cities and society, 41, 114-119.
[36] Abbas, M. T., Jibran, M. A., Afaq, M., & Song, W. C. (2019). An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter. Transactions on Emerging Telecommunications Technologies, e3734.
[37] Al-qutwani, M., & Wang, X. (2019). Smart Traffic Lights over Vehicular Named Data Networking. Information, 10(3), 83.
[38] Swarnamugi, M., & Chinnaiyan, R. (2020). Context—Aware Smart Reliable Service Model for Intelligent Transportation System Based on Ontology. In Proceedings of ICRIC 2019 (pp. 23-30). Springer, Cham.
[39] Lee, W. H., & Chiu, C. Y. (2020). Design and Implementation of a Smart Traffic Signal Control System for Smart City Applications. Sensors, 20(2), 508.
[40] Skabardonis, A. (2020). Traffic management strategies for urban networks: smart city mobility technologies. In Transportation, Land Use, and Environmental Planning (pp. 207-216). Elsevier.
[41] Liu, L., Gao, C., Mao, J., Lu, W., & Chen, Y. (2020). The Theoretical Concept and Method System of Traffic Congestion Control of Urban Road Network with Intelligent Transportation Systems. In ICTE 2019 (pp. 190-198). Reston, VA: American Society of Civil Engineers.
[42] Rahimi S, Jamali MA. A hybrid geographic-DTN routing protocol based on fuzzy logic in vehicular ad hoc networks. Peer-to-Peer Networking and Applications. 2018:1-4.
[43] Raw RS, Kadam A. Performance Analysis of DTN Routing Protocol for Vehicular Sensor Networks. InNext-Generation Networks 2018 (pp. 229-238). Springer, Singapore.
[44] DE ANDRADE, Gil Eduardo, et al. Message routing in vehicular delay-tolerant networks based on human behavior. In: Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2016 10th International Symposium on. IEEE, 2016. p. 1-6.
[45] Mehra, R., & Dudeja, R. (2020). SECURE OLSR ROUTING PROTOCOL BASED ON HASH CHAIN FOR EFFICIENT CLUSTERING IN VANET. Journal of Natural Remedies, 21(2), 113-120.
[46] Oyakhire, O., & Gyoda, K. (2020, July). Improved OLSR considering node density and residual energy of nodes in dense networks. In 2020 35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC) (pp. 161-165). IEEE.
[47] Jain, R., & Kashyap, I. (2020). Energy-Based Improved MPR Selection in OLSR Routing Protocol. In Data Management, Analytics and Innovation (pp. 583-599). Springer, Singapore.
[48] Oyakhire, O., & Gyoda, K. (2020). Improved Proactive Routing Protocol Considering Node Density Using Game Theory in Dense Networks. Future Internet, 12(3), 47.
[49] Apolin, S. K., Veniston, B., & Krishnaraj, N. (2020). EFFICIENT ROUTING IN VANETS USING TABU SEARCH (TS) ALGORITHM. Journal of Critical Reviews, 7(13), 989-994.
[50] Zhang, G., Wu, M., Duan, W., & Huang, X. (2018). Genetic algorithm based QoS perception routing protocol for VANETs. Wireless Communications and Mobile Computing, 2018.
[51] Muniyandi, R. C., Qamar, F., & Jasim, A. N. (2020). Genetic Optimized Location Aided Routing Protocol for VANET Based on Rectangular Estimation of Position. Applied Sciences, 10(17), 5759.
[52] Chahal, M., & Harit, S. (2019). Optimal path for data dissemination in Vehicular Ad Hoc Networks using meta-heuristic. Computers & Electrical Engineering, 76, 40-55.
[53] Gupta, D., & Kumar, R. (2014, September). An improved genetic based routing protocol for VANETs. In 2014 5th International Conference-Confluence The Next Generation Information Technology Summit (Confluence) (pp. 347-353). IEEE.
[54] Kasana, R., & Kumar, S. (2017, February). A geographic routing algorithm based on Cat Swarm Optimization for vehicular ad-hoc networks. In 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 86-90). IEEE.
[55] Ye, M., Guan, L., & Quddus, M. (2020). TDMP_Reliable Target Driven and Mobility Prediction based Routing Protocol in Complex Vehicular Ad hoc Network. arXiv preprint arXiv:2009.01302.
[56] Wille, E. C., Del Monego, H. I., Coutinho, B. V., & Basilio, G. G. (2016). Routing Protocols for VANETs: An Approach based on Genetic Algorithms. KSII Transactions on Internet & Information Systems, 10(2).
[57] Okulewicz, M., & Mańdziuk, J. (2017). The impact of particular components of the PSO-based algorithm solving the Dynamic Vehicle Routing Problem. Applied Soft Computing, 58, 586-604.
[58] Kohl, N., Desrosiers, J., Madsen, O. B., Solomon, M. M., & Soumis, F. (1999). 2-path cuts for the vehicle routing problem with time windows. Transportation Science, 33(1), 101-116.
[59] Homberger, J. (2000). Eine verteilt-parallele Metaheuristik. In Verteilt-parallele Metaheuristiken zur Tourenplanung (pp. 139-165). Deutscher Universitätsverlag, Wiesbaden.
[60] Rochat, Y., & Taillard, É. D. (1995). Probabilistic diversification and intensification in local search for vehicle routing. Journal of heuristics, 1(1), 147-167.
[61] Taillard, É., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J. Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation science, 31(2), 170-186.
[62] Goel, R., Maini, R., & Bansal, S. (2019). Vehicle routing problem with time windows having stochastic customers demands and stochastic service times: Modelling and solution. Journal of Computational Science, 34, 1-10.
[63] Jernheden, E., Lindström, C., Persson, R., Wedenmark, M., Erős, E., Roselli, S. F., & Åkesson, K. (2020, August). Comparison of Exact and Approximate methods for the Vehicle Routing Problem with Time Windows. In 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE) (pp. 378-383). IEEE.
[64] Ganesh, C. S., Sivakumar, R., & Rajkumar, N. (2021). Hybrid Swarm Intelligence Algorithm for Solving Vehicle Routing Problem with Time Windows. Annals of the Romanian Society for C
[65] Mehdi, N., Abdelmoutalib, M., & Imad, H. (2021). A modified ALNS algorithm for vehicle routing problems with time windows. In Journal of Physics: Conference Series (Vol. 1743, No. 1, p. 012029). IOP Publishing.