بررسی عددی یک طرح تفاضلی برای معادلات انتشار کسری زمانی- مکانی کپوتو- ریس چندجملهای
الموضوعات :مجتبی فردی 1 , ابراهیم امینی 2
1 - گروه ریاضی کاربردی، دانشکده علوم ریاضی، دانشگاه شهرکرد، صنوق پستی 88186-34141، شهرکرد، ایران
2 - گروه ریاضی، دانشگاه پیام نور، صندوق پستی ۴۶٩٧- ١٩٣٩۵، تهران، ایران
الکلمات المفتاحية: Fractional diffusion equations, Caputo-Riesz derivative, Convergence, stable Conditionally, Difference scheme,
ملخص المقالة :
چکیده: در این مقاله، یک طرح تفاضلی برای حل معادلات انتشار کسری زمانی- مکانی چند جملهای ارائه میشود. در معادلات انتشار کسری، مشتق زمانی از نوع کپوتو چند جملهای و مشتق مکانی از نوع ریس هستند. معادلات مذکور در بعدهای یک و دو در نظر گرفته شدهاند. در بعد یک مشتق مکانی ریس از مرتبهی و در بعد دو مشتق مکانی ریس از مرتبههای و هستند. همچنین، مشتق کپوتو چند جملهای از مرتبههای هستند. آنالیز پایداری و همگرایی طرح تفاضلی ارائه میشود و شرایط پایداری طرح تفاضلی ارائه شده را مورد بررسی قرار میدهیم. اثبات میکنیم که طرح تفاضلی پیشنهادی پایدار مشروط است. علاوهبراین نشان میدهیم که طرح تفاضلی با مرتبه در زمان و با مرتبهی دو در مکان همگراست. در پایان دو مثال عددی به ترتیب در بعدهای یک و دو داده میشود تا کارآیی و قابل اجرا بودن طرح تفاضلی پیشنهادی را از نظر دقت و سرعت همگرایی نشان دهیم.
[1] Metzler, R., and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339(1), 1–77.
[2] Zaslavsky, G. (2002). Chaos, fractional kinetics, and anomalous transport. Physics Reports, 371(6), 461–580.
[3] Metzler, R., and Klafter, J. (2004). The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General, 37(31), R161–R208.
[4] Gloeckle, W. G., and Nonnenmacher, T. F. (1991). Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules, 24(24), 6426–6434.
[5] Schiessel, H., Metzler, R., Blumen, A., and Nonnenmacher, T. F. (1995). Generalized viscoelastic models: their fractional equations with solutions. Journal of Physics A: Mathematical and General, 28(23), 6567–6584.
[6] Diethelm, K. (2010). The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Lecture Notes in Mathematics, 2004) (2010th ed.). Springer.
[7] Hilfer, E. (2000). Applications of Fractional Calculus in Physics, World Scientific Publishing, New York, NY, USA.
[8] I. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, Calif, USA.
[9] Samko, S. G., Kilbas, A. A., and Marichev, O. I., (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Philadelphia, Pa, USA.
[10] Diethelm, K., Ford, N. J., and Freed, A. D. (2004). Detailed Error Analysis for a Fractional Adams Method. Numerical Algorithms, 36(1), 31–52.
[11] Zhuang, P., Liu, F., Anh, V., and Turner, I. (2008). New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation. SIAM Journal on Numerical Analysis, 46(2), 1079–1095.
[12] Tang, T. (1993). A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Applied Numerical Mathematics, 11(4), 309–319.
[13]. Chen, H., Xu, D., and Peng, Y. (2014). An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation. International Journal of Computer Mathematics, 92(10), 2178–2197.
[14]. Chen, H., Gan, S., and Xu, D. (2016). A fractional trapezoidal rule type difference scheme for fractional order integro–differential equation. J. Frac. Calcul. Appl., 7, 133–146.
[15] Elmahdi, E. G. M., & Huang, J. (2021). Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative. AIMS Mathematics, 6(6), 6356–6376.
[16] Arshad, S., Bu, W., Huang, J., Tang, Y., and Zhao, Y. (2017). Finite difference method for time–space linear and nonlinear fractional diffusion equations. International Journal of Computer Mathematics, 95(1), 202–217.
[17] Meerschaert, M. M., and Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1), 65–77.
[18] Yang, Q., Liu, F., and Turner, I. (2010). Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Applied Mathematical Modelling, 34(1), 200–218.
[19] Sousa, E. (2012). A second order explicit finite difference method for the fractional advection diffusion equation. Computers & Mathematics with Applications, 64(10), 3141–3152.
[20] Tian, W., Zhou, H., and Deng, W. (2015). A class of second order difference approximations for solving space fractional diffusion equations. Mathematics of Computation, 84(294), 1703–1727.
[21] Ding, H., Li, C., and Chen, Y. (2014). High-Order Algorithms for Riesz Derivative and Their Applications(I). Abstract and Applied Analysis, 2014, 1–17.
[22] Lubich, C. (1986). Discretized Fractional Calculus. SIAM Journal on Mathematical Analysis, 17(3), 704–719.
[23] Ding, H., Li, C., and Chen, Y. (2015). High-order algorithms for Riesz derivative and their applications (II). Journal of Computational Physics, 293, 218–237.
[24] Ding, H., and Li, C. (2016). High-Order Algorithms for Riesz Derivative and their Applications (III). Fractional Calculus and Applied Analysis, 19(1), 19–55.
[25] Metzler, R., and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339(1), 1–77.
[26] Tang, Q. (2020). On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 25(2), 761–779.
[27] Povstenko, Y., Kyrylych, T., and Ryga, G., (2017). Fractional diffusion in a solid with mass absorption. Entropy, 19, 203.
[28] Liu, F., Anh, V. V., Turner, I., and Zhuang, P. (2003). Time fractional advection-dispersion equation. Journal of Applied Mathematics and Computing, 13(1–2), 233–245.
[29] Povstenko, Y., and Kyrylych, T., (2017). Two approaches to obtaining the space-time fractional advection–diffusion equation. Entropy, 19, 297.
[30] Huang, F., and Liu, F. (2005). The fundamental solution of the space-time fractional advection-dispersion equation. Journal of Applied Mathematics and Computing, 18(1–2), 339–350.
[31] Tripathi, N., Das, S., Ong, S., Jafari, H., and al Qurashi, M. (2016). Solution of Higher Order Nonlinear Time-Fractional Reaction Diffusion Equation. Entropy, 18(9), 329.
[32] Momani, S., and Odibat, Z. (2008). Numerical solutions of the space-time fractional advection-dispersion equation. Numerical Methods for Partial Differential Equations, 24(6), 1416–1429.
[33] Liu, Q., Liu, F., Turner, I., and Anh, V. (2007). Approximation of the Lévy–Feller advection–dispersion process by random walk and finite difference method. Journal of Computational Physics, 222(1), 57–70.
[34] Liu, F., Zhuang, P., Anh, V., Turner, I., and Burrage, K. (2007). Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation. Applied Mathematics and Computation, 191(1), 12–20.
[35] Ervin, V. J., and Roop, J. P. (2006). Variational formulation for the stationary fractional advection dispersion equation. Numerical Methods for Partial Differential Equations, 22(3), 558–576.
[36] Hejazi, H., Moroney, T., and Liu, F. (2014). Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. Journal of Computational and Applied Mathematics, 255, 684–697.
[37] Carella, A. R., and Dorao, C. A. (2013). Least-Squares Spectral Method for the solution of a fractional advection–dispersion equation. Journal of Computational Physics, 232(1), 33–45.
[38] Zheng, G., and Wei, T. (2010). Spectral regularization method for a Cauchy problem of the time fractional advection–dispersion equation. Journal of Computational and Applied Mathematics, 233(10), 2631–2640.
[39] Jiang, H., Liu, F., Turner, I., and Burrage, K. (2012). Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. Journal of Mathematical Analysis and Applications, 389, 1117-1127.
[40] Zhang, Y., Sun, Z., and Liao, H. (2014). Finite difference methods for the time fractional diffusion equation on non-uniform meshes. Journal of Computational Physics, 265, 195-210.
[41] Li, C., and Zeng, F. (2015). Numerical methods for fractional calculus, Boca Raton, FL: CRC Press, Taylor and Francis Group.
[42] Chen, M., and Deng, W. (2014). A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Applied Mathematical Modelling, 38(13), 3244–3259.