طراحی مدل استفاده از شبکه های عصبی مصنوعی جهت پیش بینی سری های زمانی غیر خطی (مطالعه موردی : شاخص بورس اوراق بهادار تهران)
الموضوعات :بهمن اشرفی جو 1 , ناصر فقهی فرهمند 2 , یعقوب علوی متین 3 , کمال الدین رحمانی یوشانلویی 4
1 - دانشجوی دکتری گروه مدیریت، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 - دانشیار گروه مدیریت، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران (نویسنده مسئول)
farahmand@iaut.ac.ir
3 - گروه مدیریت، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
4 - عضو هیئت علمی گروه مدیریت، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
الکلمات المفتاحية: شاخص کل سهام, پیش بینی, شبکه عصبی مصنوعی, بورس اوراق بهادار تهران,
ملخص المقالة :
پیش بینی شاخص کل سهام یک کار چالش برانگیز است، با توجه به پیچیدگی متغیرهای بازار سهام و فقدان مدیریت و بروز مشکل در مواقع بحرانی، توسعه یک مدل کار آمد برای پیش بینی شاخص کل سهام بسیار دشوار است. یکی از روشهای شناخته شده و جدید برای پیش بینی شاخص کل سهام، روش استفاده از شبکه های عصبی مصنوعی میباشد. هدف اصلی از این پژوهش طراحی مدل استفاده از شبکه های عصبی مصنوعی جهت پیش بینی سری های زمانی غیر خطی (مطالعه موردی: شاخص بورس اوراق بهادار تهران) بوده و این تحقیق از نظر هدف، کاربردی و از نظر روش انجام تحقیق، توصیفی مبتنی بر پیمایش و از نظر روش بررسی، تحلیلی-ریاضی می باشد. جامعهی آماری این تحقیق، شاخص کل بورس اوراق بهادار تهران ازسال 1369 تا سال 1399 می باشد. در این پژوهش ابزاری که با آن به سنجش متغیرهای مورد نظر پرداخته شده است اسناد و آمار بورس اوراق بهادار تهران بوده و برای تجزیه و تحلیل داده های این تحقیق از روش آمار توصیفی و آمار استنباطی و همچنین از شبکه عصبی مصنوعی چند لایه پرسپترون استفاده شده است. نتایج این تحقیق نشان دهنده تایید بالا بودن دقت پیش بینی شاخص کل بورس اوراق بهادار تهران نسبت به سایر روش های تخمین توسط مدل ارائه شده بوده که قدرت پیش بینی شاخص کل تا 7/1 درصد خطا را دارد و نیز تائید پیروی شاخص سهام بورس تهران از یک فرایند غیر خطی از دیگر نتایج این پژوهش بشمار می رود.