مدلی برای پیش بینی نیاز به جراحی ارتوپدی با استفاده از تکنیک های داده کاوی
الموضوعات :سید سینا فاطمی رضوی 1 , سید عبداله امین موسوی 2
1 - برنامه نویس دات نت در گروه شرکت های طرفه نگار
2 - استادیار دانشگاه آزاد اسلامی واحد علوم وتحقیقات تهران
الکلمات المفتاحية: ارتوپدی, داده کاوی, درمان جراحی,
ملخص المقالة :
با گسترش استفاده از رایانه در جنبه های مختلف زندگی افراد، حجم بسیار زیادی از داده ها تولید می شود که در بسیاری از اوقات این داده ها شامل اطلاعات ارزشمندی هستند. برای استخراج این اطلاعات و بهره بردن از آنها می توان از علم داده کاوی1 بهره برد. با استفاده از داده کاوی می توان، الگوهای پنهان موجود در داده ها را کشف نمود و برای پیش بینی موارد جدید مورد استفاده قرار داد. از جمله حوزه هایی که با تولید حجم انبوه داده ها روبرو می باشد، حوزه ی درمان است. در این پژوهش به طور خاص در زمینه ی ارتوپدی تمرکز خواهد شد. این تحقیق به دنبال این است که با استفاده از تکنولوژی و تکنیک های داده کاوی بتواند از داده موجود در دیتابیس بیمارستان به اطلاعات ارزشمندی دست یابد و از طریق آن اطلاعات بتواند احتمال شکستگی و همچنین نیازمند بودن بیمار به جراحی را پیش بینی کند و تصمیم گیری را برای پزشکان ساده تر و سریع تر کند. بدین صورت می توان با سرعت و دقت بالاتری نسبت به روش های موجود به تفکیک بیماران و ارائه ی خدمات به آن ها پرداخت. این پژوهش بر مبنای متدولوژی CRISP بنا نهاده شده است و نتایج حاصل از تحقیق بیانگر این امر است که استفاده ی تلفیقی از الگوریتم های CHAID و شبکه ی عصبی2 تقویت شده با روش تجمعی3 Boosting، می تواند دقت مطلوبی در پیش بینی نیاز به جراحی در بیماران ارتوپدی را ارائه دهد.
_||_