همزمان سازی کلاس خاصی از سیستمهای آشوبی همترازمبتنی بر روش کنترل کننده مودلغزشی
الموضوعات :امیرحسین رستم پور 1 , Assef Zare 2 , نرگس شفاعی 3
1 -
2 - Department of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
3 - دانشگاه آزاد اسلامی
الکلمات المفتاحية: سیستمهای آشوبی همتراز, همزمان سازی زمان , کنترل مد لغزشی, کنترل تطبیقی, عدم قطعیت, تاخیر زمانی نامشخص,
ملخص المقالة :
در این مقاله يك مكانيزم كنترلي تطبيقي به منظور همزمان سازی یک کلاس خاص از سیستمهای آشوبی همتراز داراي تاخيرهاي نامشخص، اغتشاش و عدم قطعیت ارائهشدهاست. تاخیرها و پارامترها برای دو سیستم آشوبی همتراز پایه وپیرو، مجهول و متفاوت است. سیستمهاي آشوبی همتراز ، با استفاده از نمای لیاپانوف مثبت و جاذبهاي کران دار معرفی شده است. در مكانيزم كنترلي پيشنهادي، برای همزمان سازی از دو كنترل كننده خطی و مود لغزشی تطبيقي استفاده شده است. در رهيافت كنترلي پيشنهادي، با استفاده از شرايط لیپشیتز در سيستمهاي آشوبي، قوانین بروز رسانی پارامترهاي نامعين ارائهشده و با استفاده از تئوري لياپانوف، پايداري سيستم كنترلي پيشنهادي در همزمان سازي مقاوم سيستم هاي مذكور، اثبات شده است. در نهایت همزمان سازی سیستم آشوبی همتراز پایه و پیرو جرک و جنسیوتسیو دارای عدم قطعیت هاي غیرخطی، اغتشاشهای خارجی و همچنین پارامترها و تاخیرهای زمانی ثابت و نامشخص، با استفاده از مكانيزم كنترلي پيشنهادي انجام و شبيه سازي شدهاست. بررسی نتایج نشان میدهد، كنترل كننده پيشنهادي، در زماني اندك، بر اثرهاي اغتشاش خارجی و عدم قطعیت هاي کراندار موجود در سيستمها، غلبه کرده و تخمین پارامترهای سیستم اصلی در فرايند همزمان سازي به خوبی صورت گرفته است . است است است
[1] J. Author1, B. Author2, and K. Author3, "Title of Paper", Fuzzy Sets and Systems, Vol. x, NO. xx, August 2002, pp. 363 – 367.
[1] Kellert, Stephen H. In the wake of chaos: unpredictable order in dynamical systems, Science and its conceptual foundations. University of Chicago Press, Chicago, 1993.
[2] E. N. Lorenz, "Deterministic non-periodic flow", Journal of the Atmospheric Sciences, , Vol. 2, 1963, pp. 130 – 141.
[3] V. G. Ivancevic and T. T. Ivancevic, Complex nonlinearity: chaos, phase transitions, topology change, and path integrals, Springer, 2008.
[4] W. Chartbupapan, O. Bagdasar and K. Mukdasai, "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation", Mathematics, Vol. 8, NO. 82, 2020, pp. 1-10.
[5] Z. S. Aghaya, . A. Alfi and J. T. Machado, "Robust stability of uncertain fractional order systems of neutral type with distributed delays and control input saturation", Journal Pre-proof, 2020.
[6] F. Du and J.-G. Lu, "Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities", Applied Mathematics and Computation, Vol. 375, NO. 2020, pp. 2-17.
[7] C. H. Lien and J.-D. Chen, "Discrete-delay-independent and discrete-delay-dependent criteria for a class of neutral systems", Journal of Dynamic Systems Measurement and Control, Vol. 125, NO. 2003, pp. 33-41.
[8] M. Liu, I. Dassios and F. Milano, "On the Stability Analysis of Systems of Neutral Delay Differential Equations", Circuit Systems and Signal Processing , Vol. 38, 2019, p. 1639–1653.
[9] W. Chen, S. Xu, Y. Li and Z. Zhang, "Stability analysis of neutral systems with mixed interval time-varying delays and nonlinear disturbances", Journal of the Franklin Institute, 2020.
[10] H. Liu, S.-G. Li, H.-X. Wang, and G.-J. Li, “Adaptive fuzzy synchronization for a class of fractional-order neural networks,” Chinese Physics B, vol. 26, no. 3, Article ID 030504, 2017.
[11] S. Vaidyanathan and A. T. Azar, “Adaptive Control and Synchronization of Halvorsen Circulant Chaotic Systems,” in Advances in Chaos Beory and Intelligent Control, pp. 225– 247, Springer, Berlin, Germany, 2016.
[12] S. Vaidyanathan and A. T. Azar, “Generalized Projective Synchronization of a Novel Hyperchaotic Four-wing System via Adaptive Control Method,” in Advances in Chaos Beory and Intelligent Control, pp. 275–296, Springer, Berlin, Germany, 2016.
[13] S. Vaidyanathan, O. A. Abba, G. Betchewe, and M. Alidou, “A new three-dimensional chaotic system: its adaptive control and circuit design,” International Journal of Automation and Control, vol. 13, no. 1, pp. 101–121, 2019.
[14] S. Kumar, A. E. Matouk, H. Chaudhary, and S. Kant, “Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques,” International Journal of Adaptive Control and Signal Processing, vol. 35, no. 4, pp. 484–497, 2021.
[15] C. Huang and J. Cao, “Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system,” Physica A: Statistical Mechanics and Its Applications, vol. 473, pp. 262–275, 2017.
[16] I. Ahmad, A. B. Saaban, A. B. Ibrahim, M. Shahzad, and N. Naveed, “the synchronization of chaotic systems with different dimensions by a robust generalized active control,” Optik, vol. 127, no. 11, pp. 4859–4871, 2016.
[17] S. Çiçek, A. Ferikoglu, and ˘ ˙I. Pehlivan, “A new 3d chaotic system: dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application,” Optik, vol. 127, no. 8, pp. 4024–4030, 2016.
[18] S. Mobayen, “Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control
,” ISA Transactions, vol. 77, pp. 100–111, 2018.
[19] X. Chen, J. H. Park, J. Cao, and J. Qiu, “Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control,” Neurocomputing, vol. 273, pp. 9–21, 2018.
[20] U. E. Kocamaz, B. Cevher, and Y. Uyaroglu, “Control and ˘ synchronization of chaos with sliding mode control based on cubic reaching rule,” Chaos,” Solitons & Fractals, vol. 105, pp. 92–98, 2017.
[21] J. Sun, Y. Wang, Y. Wang, and Y. Shen, “Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control,” Nonlinear Dynamics, vol. 85, no. 2, pp. 1105–1117, 2016.
[22] Z. Zhao, X. Li, J. Zhang, and Y. Pei, “Terminal sliding mode control with self-tuning for coronary artery system synchronization,” International Journal of Biomathematics, vol. 10, no. 03, Article ID 1750041, 2017.
[23] J. Ni, L. Liu, C. Liu, and X. Hu, “Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems,” Nonlinear Dynamics, vol. 89, no. 3, pp. 2065–2083, 2017.
[24]. Dash S, Abraham A, Luhach AK et al, “Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis,” Int J Distrib Sens Netw, vol. 16, no. 1, pp. 1–18,2020.
[25]. Panahi S, Shirzadian T, Jalili M, Jafari S , “A new chaotic network model for epilepsy,” Appl Math Comput, vol. 346, pp.395–407, 2019.
[26]. Bowyer SM, Gjini K, Zhu X et al , “Potential biomarkers of schizophrenia from MEG resting-state functional connectivity networks: preliminary data,” J Behav Brain Sci, vol. 5, no. 1, pp.1–11,2015.
[27]. Babiloni C, Lizio R, Marzano N et al, “Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms,” Int J Psychophysiol, vol. 103, pp.88–102, 2016.
[28]. Kumar P, Parmananda P, “Control, synchronization, and enhanced reliability of aperiodic oscillations in the mercury beating heart system,” Chaos, vol. 28, pp. 045105,2018
[29]. Li C-H, Yang S-Y , “Eventual dissipativeness and synchronization of nonlinearly coupled dynamical network of Hindmarsh Rose neurons,” Appl Math Model, vol. 39. no 21, pp.6631–6644,2015
[30]. Malik S, Mir AJNN , “Synchronization of Hindmarsh Rose neurons,” Neural Netw, vol. 123, pp. 372–380, 2020.
[31]. Ge M et al , “Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network,” Appl Math Comput, vol.352, pp.136–145. 2019
[32] Bo W, and Guanjun W, “ On the Synchronization of Uncertain Master-Slave Chaotic System with Disturbance,” Chaos Solitons and Fractals, vol. 41,pp. 145–51. 2009.
[33] Zhao Z-S, Zhang J, and Sun L-K, “ Sliding Mode Control in Finite Time Stabilization for Synchronization of Chaotic Systems,” ISRN Appl Mathematics ,2013.
[34] Pooyan AH, Ali SSA, Saad M, and Hemanshu RP, “ Chattering-free Trajectory Tracking Robust Predefined-Time Sliding Mode Control for a Remotely Operated Vehicle,” Automation Electr Syst , pp. 1–19, 2020.doi:10.1007/s40313- 020-00599-4
[35] Ali SA, Pooyan AH, and Saad M, “ Two Novel Approaches of NTSMC and ANTSMC Synchronization for Smart Gritd Chaotic Systems,” Tech Econ smart grids Sustain Energ, pp. 3–14. 2018,doi:10.1007/s40866-018- 0050-0
[36] Pooyan AH, Ali SA, Saad M, and Hemanshu RP, “Two Novel Approaches of Adaptive Finite-Time Sliding Mode Control for a Class of Single-Input MultipleOutput Uncertain Nonlinear System. IET Cyber-systems and Robotics,” pp. 1–11. 2021. doi:10.1049/csy2.12012
[37] A.Zare, S.Z.Mirrezapour, M.Hallaji, A.Shoeibi, M.Jafari, N.Ghassemi, R.Alizadehsani and A.Mosavi, "Robust Adaptive Synchronization of a Class of Uncertain Chaotic Systems with Unknown Time-Delay," Applied Sciences, vol. 10, no. 24, p. 8875, 2020.
[38] T. Li, E. Thandapani, "Oscillation of solutions to odd-order nonlinear neutral functional differential equations, " Electron. J. Differential Equations,vol. 23,pp. 1–12, 2011.
[38] Z.S. Aghayan, A. Alfi, J.A.Tenreiro Machado, " Robust stability analysis of uncertain fractional order neutral-type delay nonlinear systems with actuator saturation," Applied Mathematical Modelling, vol. 90, pp. 1035–1048,2021.
[39] Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952.
[40]J.H. Park, S.M. Lee, O.M. Kwon, "Adaptive synchronization of Genesio–Tesi chaotic system via a novel feedback control," Physics. Letters A, vol. 371, pp. 263–270,2007
[41] W.Pan, T.Li, MSajid, S.Ali, L.Pu, " Parameter Identification and the Finite-Time Combination–Combination Synchronization of Fractional-Order Chaotic Systems with Different Structures under Multiple Stochastic Disturbances," Mathematics , vol. 10, no. 5, p. 712, 2022.