Importance of Correlations between Colostrum-Blood Fatty Acid Components in Dairy Cattle for Animal Health
الموضوعات :
1 - Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
الکلمات المفتاحية: blood, colostrum, correlation, fatty acids, gas chromatography,
ملخص المقالة :
In order to evaluate the metabolic status of Holstein cows, correlations were determined between colos-trum-blood and milk-blood fatty acids. 27 fatty acids were detected in colostrum, 30 in milk and 25 in blood. The highest fatty acid ratio in colostrum and milk was C16:0 (36.13%; 32.54%), while in blood it was C18:1n9c (22.28%; 20.4%). The largest difference between the fatty acid levels in colostrum and blood was determined in linoleic acid (3.68%; 20.37%). As a result of the analysis, it was determined that colos-trum saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) contents were higher than blood (SFA: 61.52%; 42.10%; MUFA: 27.93%; 26.00%, respectively), while polyunsaturated fatty acids (PUFA) content was lower than blood (PUFA: 4.90%; 25.99%, respectively). In the correlation analysis between colostrum and blood fatty acids; A statistically significant positive correlation (P<0.01) was found between colostrum and blood fatty acids (r2=0.768) and colostrum-blood SFA (r2=0.894), colostrum-blood MUFA (r2=0.932) and colostrum-blood PUFA (r2=0.980) values. Regression graphs showed that changes in colos-trum SFA, MUFA and PUFA were largely dependent on changes in blood SFA, MUFA and PUFA (R2=0.800, R2=0.868, R2=0.961, respectively). Therefore, it was determined that changes in colostrum and milk fatty acids made a significant contribution to the estimation of blood fatty acids.
Amores G. and Virto M. (2019). Total and free fatty acids analysis in milk and dairy fat. Separations. 6(1), 14-25.
Andjelić B., Djoković R., Cincović M., Bogosavljević-Bošković S., Petrović M., Mladenović J. and Čukić A. (2022). Relationships between milk and blood biochemical parameters and metabolic status in dairy cows during lactation. Metabolites. 9(8), 733-739.
Ayala L., Gómez-Cortés P., Hernández F., Madrid J., Martínez-Miró S. and de la Fuente M.A. (2024). Comparison of the Fatty Acid Profiles of Sow and Goat Colostrum. Vet. Sci. 11(8), 341-349.
Bionaz M., Vargas-Bello-Pérez E. and Busato S. (2020). Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J. Anim. Sci. Biotechnol. 11, 110-118.
Blıgh E.G. and Dyer W.J. (1959). Arapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917.
Boetto C. (2024). A novel statistical approach to evaluate effects on covariance/correlation and its application in human gut microbiome and metabolomics. PhD Thesis. Université Paris Cité, Paris, France.
Bogie J.F.J., Haidar M., Kooij G. and Hendriks J.J.A. (2020). Fatty acid metabolism in the progression and resolution of CNS disorders. Adv. Drug Deliv. Rev. 159, 198-213.
Cambiaggi L., Chakravarty A., Noureddine N. and Hersberger M. (2023). The role of α-linolenic acid and its oxylipins in human cardiovascular diseases. Int. J. Mol. Sci. 24(7), 6110-6117.
Caron J.P., Gandy J.C., Brown J.L. and Sordillo L.M. (2018). Docosahexaenoic acid-derived oxidized lipid metabolites modulate the inflammatory response of lipolysaccharide-stimulated macrophages. Prostag Oth Lipid M. 136, 76-83.
Chen M., Zhao X., Zheng N., Zhang Y. and Wang J. (2025). Fatty acid fingerprint enables linking forage and milk composition in assessing the geographical origin of Chinese Holstein cow milk. J. Dairy Sci. 108(7), 6679-6694.
Chetty A. and Blekhman R. (2024). Multi-omic approaches for host-microbiome data integration. Gut Microbes. 16(1), 2297860-229768.
Djoković R., Cincović M., Ilić Z., Kurćubić V., Andjelić B., Petrović M., Lalić N. and Jašović B. (2019). Relationships between contents of biochemical metabolites in blood and milk in dairy cows during transition and mid lactation. Int. J. Appl. Res. Vet. Med. 17, 1-9.
Dudi K., Devi I., Vinay V.V. and Dhaigude V. (2021). Economic importance and management strategies foralleviation of milk fat depression in dairy animals: A review. Agric. Rev. 43(1), 62-69.
Fasse S., Alarinta J., Frahm B. and Wirtanen G. (2021). Bovine colostrum for human consumption—Improving microbial quality and maintaining bioactive characteristics through processing. Dairy. 2(4), 556-575.
Göktaş A. and İşçi Ö. (2010). Determination of Unemployment Rate in Turkey by Principal Component Regression Analysis. SU Fac. Econ. Administr. Sci. J. Soc. Econ. Res. 20, 279-294.
Gugliucci A. (2023). Triglyceride-rich lipoprotein metabolism: Key regulators of their flux. J. Clin. Med. 12(13), 4399-4405.
Guo Y., Wei Z., Zhang Y. and Cao J. (2024). Research progress on the mechanism of milk fat synthesis in cows and the effect of conjugated linoleic acid on milk fat metabolism and its underlying mechanism: A review. Animals. 14(2), 204-211.
Ichihara K., Shibahara A., Yamamoto K. and Nakayama T. (1996). An improved method for rapid analysis of the fatty ac-ids of glycerolipids. Lipids. 31(5), 535-539.
Kimura T., Tsunekawa K., Nagasawa T., Aoki T., Miyashita K., Yoshida A., Nakajima K. and Murakami M. (2023). Circulating levels of lipoprotein lipase and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1: new markers for cardiovascular diseases among noncommunicable diseases: a brief narrative review. J. Lab. Precis. Med. 8, 18-18.
Kupczyński R., Pacyga K., Lewandowska K., Bednarski M. and Szumny A. (2024). Milk odd- and branched-chain fatty acids as biomarkers of rumen fermentation. Animals. 14, 1706-1716.
Lopez A.J. and Heinrichs A.J. (2022). Invited review: The importance of colostrum in the newborn dairy calf. J. Dairy Sci. 105(4), 2733-2749.
Machado V.S. and Ballou M.A. (2022). Overview of common practices in calf raising facilities. Transl. Anim. Sci. 6(1), 234-243.
McDermott F., Kennedy E., Drouin G., Brennan L., O'Callaghan T.F., Egan M. and Hogan S.A. (2024). Triglyceride and fatty acid composition of bovine colostrum and transition milk in pasture-based dairy cows supplemented prepartum with inorganic selenium, organic selenium or rumen-protected choline. Int. J. Dairy Technol. 77, 559-574.
Mylostyvyi R., Sejian V., Izhboldina O., Kalinichenko O., Karlova L., Lesnovskay O., Begma N., Marenkov O., Lykhach V., Midyk S., Cherniy N., Gutyj B. and Hoffmann G. (2021). Changes in the spectrum of free fatty acids in blood serum of dairy cows during a prolonged summer heat wave. Animals. 11(12), 3391-3401.
O’Callaghan T.F., O’Donovan M., Murphy J.P., Sugrue K., Mannion D., McCarthy W.P., Timlin M., Kilcawley K.N., Hickey R.M. and Tobin J.T. (2020). Evolution of the bovine milk fatty acid profile - From colostrum to milk five days post parturition. Int. Dairy J. 104, 104655-104663.
Palombo V., Conte G., Mele M., Macciotta N., Stefanon B., Marsan P. and D’Andrea M. (2020). Use of multivariate factor analysis of detailed milk fatty acid profile to perform a genome-wide association study in Italian Simmental and Italian Holstein. J. Appl. Genet. 61, 451-463.
Poonia A. and Shiva S. (2022). Bioactive compounds, nutritional profile and health benefits of colostrum: A review. Food Prod. Proc. Nutr. 4, 26-35.
Pyo J., Hare K., Pletts S., Inabu Y., Haines D., Sugino T., Guan L.L. and Steele M. (2020). Feeding colostrum or a 1:1 colostrum:milk mixture for 3 days postnatal increases small intestinal development and minimally influences plasma glucagon-like peptide-2 and serum insulin-like growth factor-1 concentrations in Holstein bull calves. J. Dairy Sci. 103, 4236-4251.
Qin N., Bayat A.R., Trevisi E., Minuti A., Kairenius P., Viitala S., Mutikainen M., Leskinen H., Elo K., Kokkonen T. and Vilkki J. (2018). Dietary supplement of conjugated linoleic acids or polyunsaturated fatty acids suppressed the mobilization of body fat reserves in dairy cows at early lactation through dif-ferent pathways. J. Dairy Sci. 101(9), 7954-7970.
Rahman M.A., Redoy M.R.A., Shuvo A.A.S., Chowdhury R., Hossain E., Sayem S.M. and Al-Mamun M. (2024). Influence of herbal supplementation on nutrient digestibility, blood bio-markers, milk yield, and quality in tropical crossbred cows. PLoS One. 19(11), e0313419.
Ren C., Jin J., Wang X., Zhang Y. and Jin Q. (2022). Evaluation of fatty acid profile of colostrum and milk fat of different sow breeds. Int. Dairy J. 126, 105250-105258.
Revskij D., Haubold S., Viergutz T., Kröger-Koch C., Tuchscherer A., Kienberger H., Rychlik M., Tröscher A., Hammon H.M., Schuberth H.J. and Mielenz M. (2019). Die-tary fatty acids affect red blood cell membrane composition and red blood cell ATP release in dairy cows. Int. J. Mol. Sci. 20(11), 2769-2777.
Silva F.G., Silva S.R., Pereira A.M., Cerqueira J.L. and Conceição C. (2024). A comprehensive review of bovine colostrum com-ponents and selected aspects regarding their impact on neona-tal calf physiology. Animals. 14(7), 1130-1138.
Turini L., Conte G., Bonelli F., Serra A., Sgorbini M. and Mele M. (2020). Multivariate factor analysis of milk fatty acid com-position in relation to the somatic cell count of single udder quarters J. Dairy Sci. 103, 7392-7406.
Uken K.L., Schäff C.T., Vogel L., Gnott M., Dannenberger D., Görs S., Tuchscherer A., Tröscher A., Liermann W. and Hammon H.M. (2021). Modulation of colostrum composition and fatty acid status in neonatal calves by maternal supplementation with essential fatty acids and conjugated linoleic acid starting in late lactation. J. Dairy Sci. 104, 4950-4969.
Van Q.C.D., Knapp E., Hornick J.L. and Dufrasne I. (2020). Influence of days in milk and parity on milk and blood fatty acid concentrations, blood metabolites and hormones in early lactation Holstein cows. Animals. 10(11), 2081-2091.
Wilms J.N., Hare K.S., Fischer-Tlustos A.J., Vahmani P., Dugan M.E.R., Leal L.N. and Steele M.A. (2022). Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J. Dairy Sci. 105(3), 2612-2630.
Windberger U., Sparer A. and Huber J. (2023). Cow blood - A superior storage option in forensics? Heliyon. 9(3), 14296-14304.
Yuan T., Qi C., Dai X., Xia Y., Sun C., Sun J., Yu R., Zhou Q., Jin Q., Wei W. and Wang X. (2019). Triacylglycerol composition of breast milk during different lactation stages. J. Agric. Food Chem. 67(8), 2272-2278.
Zwierzchowski G., Zhang G., Tobolski D., Wójcik R., Wishart D.S. and Ametaj B.N. (2024). Metabolomic fingerprinting of milk fever cows: Pre-and postpartum metabolite alterations. J. Vet. Int. Med. 38(6), 3384-3397.
