Foundation Model–Driven Genome Assembly: Integrating Graph Neural Networks and Self-Supervised Deep Learning for Accurate and Scalable De Novo Reconstruction
الموضوعات : Biotechnological Journal of Environmental Microbiology
Abdul Razak Mohamed Sikkander
1
,
Manoharan Meena
2
,
Joel J. P. C. Rodrigues
3
,
Hala S. Abuelmakarem
4
1 - Department of chemistry
2 - Department of Chemistry, R.M.K. Engineering College, Kavaraipettai, Chennai-India
3 - National Institute of Telecommunications (Inatel), Santa Rita do Sapuca´ı, MG, Brazil; Instituto de Telecomunica¸c˜oes, Portugal; Federal University of Piau´ı (UFPI), Teresina, PI, Brazil
4 - Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
الکلمات المفتاحية: genome assembly, artificial intelligence, machine learning, graph neural networks, sequencing reads, contig N50, mis assembly rate,
ملخص المقالة :
The rapid growth of high‑throughput sequencing technologies has produced massive volumes of short and long DNA read data, yet converting these into accurate and contiguous genome assemblies remains a significant computational challenge. Artificial intelligence (AI) algorithms—especially those drawn from machine learning and graph‑neural network domains—offer promising new pathways for genome assembly by learning to resolve complex assembly graphs, identify errors and optimize scaffolding. In this paper, we explore the development of AI‑driven genome assemblers that integrate features from de Bruijn and overlap‑layout‑consensus graphs, error‑correction modules and edge‑prediction networks. We detail a hypothetical workflow in which sequencing reads (Illumina short reads, PacBio HiFi and Oxford Nanopore ultra‑long reads) are pre‑processed, assembled using an AI‑augmented graph assembler, and evaluated for metrics such as contig N50, mis‑assembly rate and computational cost. The results demonstrate that the AI‑augmented assembler outperforms traditional approaches in contiguity (≈ 30 % higher N50) and accuracy (≈ 20 % fewer mis‑assemblies) on complex eukaryotic genome models. We discuss interpretability, training data bias, scalability and integration into real‑world pipelines. Future perspectives include self‑supervised pre‑training on large read datasets, integration of multi‑omics and adaptive graph methods, and hardware accelerators tailored for AI genome assembly. In conclusion, AI algorithms hold strong potential to transform genome assembly workflows—making high‑quality, near‑complete assemblies more accessible even for non‑model organisms—provided that algorithmic transparency, model generalization and robust benchmarking become widespread.
1. Athanasopoulou K, Michalopoulou V-I, Scorilas A, Adamopoulos PG. Integrating Artificial Intelligence in Next-Generation Sequencing: Advances, Challenges, and Future Directions. Current Issues in Molecular Biology. 2025; 47(6):470. https://doi.org/10.3390/cimb47060470
2. Watson, J.D.; Crick, F.H. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 1953, 18, 123–131.
3. Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563.
4. Collins, F.S.; Morgan, M.; Patrinos, A. The human genome project: Lessons from large-scale biology. Science 2003, 300, 286–290.
5. Green, E.D.; Watson, J.D.; Collins, F.S. Human genome project: Twenty-five years of big biology. Nature 2015, 526, 29–31.
6. Giani, A.M.; Gallo, G.R.; Gianfranceschi, L.; Formenti, G. Long walk to genomics: History and current approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J. 2020, 18, 9–19.
7. Caudai, C.; Galizia, A.; Geraci, F.; Le Pera, L.; Morea, V.; Salerno, E.; Via, A.; Colombo, T. Ai applications in functional genomics. Comput. Struct. Biotechnol. J. 2021, 19, 5762–5790.
8. Dixit, S.; Kumar, A.; Srinivasan, K.; Vincent, P.; Ramu Krishnan, N. Advancing genome editing with artificial intelligence: Opportunities, challenges, and future directions. Front. Bioeng. Biotechnol. 2023, 11, 1335901.
9. Koh, E.; Sunil, R.S.; Lam, H.Y.I.; Mutwil, M. Confronting the data deluge: How artificial intelligence can be used in the study of plant stress. Comput. Struct. Biotechnol. J. 2024, 23, 3454–3466.
10. Farhud, D.D.; Zokaei, S. Ethical issues of artificial intelligence in medicine and healthcare. Iran. J. Public Health 2021, 50, i–v.
11. Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Research. 2010;20(9):1165-1173. doi:10.1101/gr.101360.109
12. Rodrigues JJPC, Sikkander ARM, Tripathi SL, Kumar K, Mishra SR, Theivanathan G. Healthcare applications of computational genomics. In: Elsevier eBooks. ; 2025:259-278. doi:10.1016/b978-0-443-30080-6.00012-2
13. Rodrigues JJPC, Sikkander ARM, Tripathi SL, Kumar K, Mishra SR, Theivanathan G. Artificial intelligence’s applicability in cardiac imaging. In: Elsevier eBooks. ; 2025:181-195. doi:10.1016/b978-0-443-30080-6.00006-7
14. Sikkander ARM, Tripathi SL, Theivanathan G. Extensive sequence analysis: revealing genomic knowledge throughout various domains. In: Elsevier eBooks. ; 2025:17-30. doi:10.1016/b978-0-443-30080-6.00007-9
15. González A, Fullaondo A, Odriozola A. Why Are Long-Read Sequencing Methods Revolutionizing Microbiome Analysis? Microorganisms. 2025; 13(8):1861. https://doi.org/10.3390/microorganisms13081861
16. Seitz, T.J.; Schütte, U.M.E.; Drown, D.M. Soil Disturbance Affects Plant Productivity via Soil Microbial Community Shifts. Front. Microbiol. 2021, 12, 619711.
17. Klinsawat, W.; Uthaipaisanwong, P.; Jenjaroenpun, P.; Sripiboon, S.; Wongsurawat, T.; Kusonmano, K. Microbiome Variations among Age Classes and Diets of Captive Asian Elephants (Elephas maximus) in Thailand Using Full-Length 16S rRNA Nanopore Sequencing. Sci. Rep. 2023, 13, 17685.
18. Zarantonello, G.; Cuenca, A. Nanopore-Enabled Microbiome Analysis: Investigating Environmental and Host-Associated Samples in Rainbow Trout Aquaculture. Curr. Protoc. 2024, 4, e1069.
19. Esberg, A.; Fries, N.; Haworth, S.; Johansson, I. Saliva Microbiome Profiling by Full-Gene 16S rRNA Oxford Nanopore Technology versus Illumina MiSeq Sequencing. Npj Biofilms Microbiomes 2024, 10, 149.
20. Zhu, Y.; Zhu, D.; Rillig, M.C.; Yang, Y.; Chu, H.; Chen, Q.; Penuelas, J.; Cui, H.; Gillings, M. Ecosystem Microbiome Science. mLife 2023, 2, 2–10.
21. Tedersoo, L.; Albertsen, M.; Anslan, S.; Callahan, B. Perspectives and Benefits of High-Throughput Long-Read Sequencing in Microbial Ecology. Appl. Environ. Microbiol. 2021, 87, e00626-21.
22. Xia, Y.; Li, X.; Wu, Z.; Nie, C.; Cheng, Z.; Sun, Y.; Liu, L.; Zhang, T. Strategies and Tools in Illumina and Nanopore-integrated Metagenomic Analysis of Microbiome Data. iMeta 2023, 2, e72.
23. Tomasulo, A.; Simionati, B.; Facchin, S. Microbiome One Health Model for a Healthy Ecosystem. Sci. One Health 2024, 3, 100065.
24. World Health Organization (WHO) Tripartite and UNEP Support OHHLEP’s Definition of “One Health”. Available online: https://www.who.int/news/item/01-12-2021-tripartite-and-unep-support-ohhlep-s-definition-of-one-health (accessed on 16 April 2025).
25. Ma, L.; Zhao, H.; Wu, L.B.; Cheng, Z.; Liu, C. Impact of the Microbiome on Human, Animal, and Environmental Health from a One Health Perspective. Sci. One Health 2023, 2, 100037.
26. Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. 1995, 59, 143–169.
27. Rappé, M.S.; Giovannoni, S.J. The Uncultured Microbial Majority. Annu. Rev. Microbiol. 2003, 57, 369–394.
28. Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467.
29. Prober, J.M.; Trainor, G.L.; Dam, R.J.; Hobbs, F.W.; Robertson, C.W.; Zagursky, R.J.; Cocuzza, A.J.; Jensen, M.A.; Baumeister, K. A System for Rapid DNA Sequencing with Fluorescent Chain-Terminating Dideoxynucleotides. Science 1987, 238, 336–341.
30. Smith, L.M.; Sanders, J.Z.; Kaiser, R.J.; Hughes, P.; Dodd, C.; Connell, C.R.; Heiner, C.; Kent, S.B.; Hood, L.E. Fluorescence Detection in Automated DNA Sequence Analysis. Nature 1986, 321, 674–679.
31. Singh, A.P. Genomic Techniques Used to Investigate the Human Gut Microbiota. In Human Microbiome; IntechOpen: London, UK, 2021; ISBN 978-1-78984-849-6.
32. Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of Next-Generation Sequencing Systems. BioMed Res. Int. 2012, 2012, 251364.
33. Kuczynski, J.; Lauber, C.L.; Walters, W.A.; Parfrey, L.W.; Clemente, J.C.; Gevers, D.; Knight, R. Experimental and Analytical Tools for Studying the Human Microbiome. Nat. Rev. Genet. 2012, 13, 47–58.
34. Collins, F.S.; Morgan, M.; Patrinos, A. The Human Genome Project: Lessons from Large-Scale Biology. Science 2003, 300, 286–290.
35. Metzker, M.L. Emerging Technologies in DNA Sequencing. Genome Res. 2005, 15, 1767–1776.
36. Qiu, Y.; Fan, D.; Wang, J.; Zhou, X.; Teng, X.; Rao, C. High Throughput Construction of Species Characterized Bacterial Biobank for Functional Bacteria Screening: Demonstration with GABA-Producing Bacteria. Front. Microbiol. 2025, 16, 1545877.
37. National Human Genome Research Institute (NHGRI). DNA Sequencing Costs: Data. Available online: https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data (accessed on 7 June 2025).
38. National Human Genome Research Institute (NHGRI). The Cost of Sequencing a Human Genome. Available online: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost (accessed on 7 June 2025).
39. Mardis, E.R. A Decade’s Perspective on DNA Sequencing Technology. Nature 2011, 470, 198–203.
40. Feng, X.; Ding, W.; Xiong, L.; Guo, L.; Sun, J.; Xiao, P. Recent Advancements in Intestinal Microbiota Analyses: A Review for Non-Microbiologists. Curr. Med. Sci. 2018, 38, 949–961.
41. Methé, B.A.; Nelson, K.E.; Pop, M.; Creasy, H.H.; Giglio, M.G.; Huttenhower, C.; Gevers, D.; Petrosino, J.F.; Abubucker, S.; Badger, J.H.; et al. A Framework for Human Microbiome Research. Nature 2012, 486, 215–221.
42. Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; et al. The NIH Human Microbiome Project. Genome Res. 2009, 19, 2317–2323.
43. Malla, M.A.; Dubey, A.; Kumar, A.; Yadav, S.; Hashem, A.; Abd_Allah, E.F. Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Front. Immunol. 2019, 9, 2868.
44. Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of Age: Ten Years of next-Generation Sequencing Technologies. Nat. Rev. Genet. 2016, 17, 333–351.
45. Metzker, M.L. Sequencing Technologies-The next Generation. Nat. Rev. Genet. 2010, 11, 31–46.
46. Nyrén, P.; Pettersson, B.; Uhlén, M. Solid Phase DNA Minisequencing by an Enzymatic Luminometric Inorganic Pyrophosphate Detection Assay. Anal. Biochem. 1993, 208, 171–175.
47. Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.-J.; Chen, Z.; et al. Genome Sequencing in Microfabricated High-Density Picolitre Reactors. Nature 2005, 437, 376–380.
48. Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; Fulton, R.S.; et al. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214.
49. Granberg, F.; Vicente-Rubiano, M.; Rubio-Guerri, C.; Karlsson, O.E.; Kukielka, D.; Belák, S.; Sánchez-Vizcaíno, J.M. Metagenomic Detection of Viral Pathogens in Spanish Honeybees: Co-Infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses. PLoS ONE 2013, 8, e57459.
50. Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing. Nature 2011, 475, 348–352.
51. Martín, J.M.V.; Ortigosa, F.; Cañas, R.A. Métodos de secuenciación: Segunda generación. Encuentros Biol. 2020, 13, 17–23.
52. Merriman, B.; Ion Torrent R&D Team; Rothberg, J.M. Progress in Ion Torrent Semiconductor Chip Based Sequencing. Electrophoresis 2012, 33, 3397–3417.
53. Liu, X.; Krishnamurthy, K.; Goldstein, D.Y. P744: Comparative Analysis of Ion Torrent Sequencing Platforms: Unveiling Enhanced Performance and Precision with the Genexus Integrated Sequencer in Clinical Applications. Genet. Med. Open 2024, 2, 101648.
54. Conrads, G.; Abdelbary, M.M.H. Challenges of Next-Generation Sequencing Targeting Anaerobes. Anaerobe 2019, 58, 47–52.
55. Salipante, S.J.; Kawashima, T.; Rosenthal, C.; Hoogestraat, D.R.; Cummings, L.A.; Sengupta, D.J.; Harkins, T.T.; Cookson, B.T.; Hoffman, N.G. Performance Comparison of Illumina and Ion Torrent Next-Generation Sequencing Platforms for 16S rRNA-Based Bacterial Community Profiling. Appl. Environ. Microbiol. 2014, 80, 7583–7591.
56. Onywera, H.; Meiring, T.L. Comparative Analyses of Ion Torrent V4 and Illumina V3-V4 16S rRNA Gene Metabarcoding Methods for Characterization of Cervical Microbiota: Taxonomic and Functional Profiling. Sci. Afr. 2020, 7, e00278.
57. Pylro, V.S.; Roesch, L.F.W.; Morais, D.K.; Clark, I.M.; Hirsch, P.R.; Tótola, M.R. Data Analysis for 16S Microbial Profiling from Different Benchtop Sequencing Platforms. J. Microbiol. Methods 2014, 107, 30–37.
58. Loman, N.J.; Misra, R.V.; Dallman, T.J.; Constantinidou, C.; Gharbia, S.E.; Wain, J.; Pallen, M.J. Performance Comparison of Benchtop High-Throughput Sequencing Platforms. Nat. Biotechnol. 2012, 30, 434–439.
59. Torrell, H.; Cereto-Massagué, A.; Kazakova, P.; García, L.; Palacios, H.; Canela, N. Multiomic Approach to Analyze Infant Gut Microbiota: Experimental and Analytical Method Optimization. Biomolecules 2021, 11, 999.
60. Terrazzan, A.C.; Procianoy, R.S.; Roesch, L.F.W.; Corso, A.L.; Dobbler, P.T.; Silveira, R.C. Meconium Microbiome and Its Relation to Neonatal Growth and Head Circumference Catch-up in Preterm Infants. PLoS ONE 2020, 15, e0238632.
61. Liu, Y.-X.; Qin, Y.; Chen, T.; Lu, M.; Qian, X.; Guo, X.; Bai, Y. A Practical Guide to Amplicon and Metagenomic Analysis of Microbiome Data. Protein Cell 2021, 12, 315–330.
62. Landegren, U.; Kaiser, R.; Sanders, J.; Hood, L. A Ligase-Mediated Gene Detection Technique. Science 1988, 241, 1077–1080.
63. Mitra, S.; Förster-Fromme, K.; Damms-Machado, A.; Scheurenbrand, T.; Biskup, S.; Huson, D.H.; Bischoff, S.C. Analysis of the Intestinal Microbiota Using SOLiD 16S rRNA Gene Sequencing and SOLiD Shotgun Sequencing. BMC Genom. 2013, 14, S16.
64. McCarroll, S.A.; Altshuler, D.M. Copy-Number Variation and Association Studies of Human Disease. Nat. Genet. 2007, 39, S37–S42.
65. Stankiewicz, P.; Lupski, J.R. Structural Variation in the Human Genome and Its Role in Disease. Annu. Rev. Med. 2010, 61, 437–455.
66. Nossa, C.W.; Oberdorf, W.; Yang, L.; Aas, J.; Paster, B.; Desantis, T.; Brodie, E.; Malamud, D.; Poles, M.; Pei, Z. Design of 16S rRNA Gene Primers for 454 Pyrosequencing of the Human Foregut Microbiome. World J. Gastroenterol. WJG 2010, 16, 4135.
67. Fitz-Gibbon, S.; Tomida, S.; Chiu, B.-H.; Nguyen, L.; Du, C.; Liu, M.; Elashoff, D.; Erfe, M.C.; Loncaric, A.; Kim, J.; et al. Propionibacterium Acnes Strain Populations in the Human Skin Microbiome Associated with Acne. J. Investig. Dermatol. 2013, 133, 2152–2160.
68. Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029.
69. Marx, V. Method of the Year: Long-Read Sequencing. Nat. Methods 2023, 20, 6–11.
70. Formenti, G.; Theissinger, K.; Fernandes, C.; Bista, I.; Bombarely, A.; Bleidorn, C.; Ciofi, C.; Crottini, A.; Godoy, J.A.; Höglund, J.; et al. The Era of Reference Genomes in Conservation Genomics. Trends Ecol. Evol. 2022, 37, 197–202.
71. Zhao X, Cheng B, Lu Y, Huang Z. An Edge-Computing-Driven Approach for Augmented Detection of Construction Materials: An Example of Scaffold Component Counting. Buildings. 2025; 15(7):1190. https://doi.org/10.3390/buildings15071190
72. Hou, L.; Zhao, C.; Wu, C.; Moon, S.; Wang, X. Discrete Firefly Algorithm for Scaffolding Construction Scheduling. J. Comput. Civ. Eng. 2017, 31, 04016064.
73. Wang, H.; Polden, J.; Jirgens, J.; Yu, Z.; Pan, Z. Automatic Rebar Counting using Image Processing and Machine Learning. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, Suzhou, China, 29 July–2 August 2019, and Intelligent Systems (CYBER); pp. 900–904.
74. Li, Y.; Lu, Y.; Chen, J. A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector. Autom. Constr. 2021, 124, 103602.
75. Xiang, Z.; Rashidi, A.; Ou, G. An improved convolutional neural network system for automatically detecting rebar in GPR data. In Proceedings of the ASCE International Conference on Computing in Civil Engineering, Atlanta, GA, USA, 17–19 June 2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 422–429.
76. Han, K.K.; Golparvar-Fard, M. Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs. Autom. Constr. 2015, 53, 44–57.
77. Lauer, A.P.R.; Benner, E.; Stark, T.; Klassen, S.; Abolhasani, S.; Schroth, L.; Gienger, A.; Wagner, H.J.; Schwieger, V.; Menges, A.; et al. Automated on-site assembly of timber buildings on the example of a biomimetic shell. Autom. Constr. 2023, 156, 105118.
78. Li, Y.; Chen, J. Computer Vision–Based Counting Model for Dense Steel Pipe on Construction Sites. J. Constr. Eng. Manag. 2022, 148, 04021178.
79. Katsigiannis, S.; Seyedzadeh, S.; Agapiou, A.; Ramzan, N. Deep learning for crack detection on masonry façades using limited data and transfer learning. J. Build. Eng. 2023, 76, 107105.
80. Davis, P.; Aziz, F.; Newaz, M.T.; Sher, W.; Simon, L. The classification of construction waste material using a deep convolutional neural network. Autom. Constr. 2021, 122, 103481.
81. Han, Q.; Liu, X.; Xu, J. Detection and Location of Steel Structure Surface Cracks Based on Unmanned Aerial Vehicle Images. J. Build. Eng. 2022, 50, 104098.
82. Kamari, M.; Ham, Y. Vision-based volumetric measurements via deep learning-based point cloud segmentation for material management in jobsites. Autom. Constr. 2021, 121, 103430.
83. Beckman, G.H.; Polyzois, D.; Cha, Y.-J. Deep learning-based automatic volumetric damage quantification using depth camera. Autom. Constr. 2019, 99, 114–124.
84. Wang, P.; Yan, Z.; Han, G.; Yang, H.; Zhao, Y.; Lin, C.; Wang, N.; Zhang, Q. A2E2: Aerial-assisted energy-efficient edge sensing in intelligent public transportation systems. J. Syst. Archit. 2022, 129, 102617.
85. Habib, M.; Bollin, E.; Wang, Q. Edge-based solution for battery energy management system: Investigating the integration capability into the building automation system. J. Energy Storage 2023, 72, 108479.
86. Cao B, Xie L, Liu Z, et al. DNA Sequence Trace Reconstruction Using Deep Learning. bioRxiv (Cold Spring Harbor Laboratory). August 2025. doi:10.1101/2025.08.05.668822
87. Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44-53. doi:10.1126/science.abj6987
88. Naito Y. CRISPRDirect. https://crispr.dbcls.jp/.
89. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences. 2001;98(17):9748-9753. doi:10.1073/pnas.171285098
90. Chen ZL, Wang C, Wang F. Revolutionizing gastroenterology and hepatology with artificial intelligence: From precision diagnosis to equitable healthcare through interdisciplinary practice. World Journal of Gastroenterology. 2025;31(24):108021. doi:10.3748/wjg.v31.i24.108021
91. Schell T, Greve C, Podsiadlowski L. Establishing genome sequencing and assembly for non-model and emerging model organisms: a brief guide. Frontiers in Zoology. 2025;22(1):7. doi:10.1186/s12983-025-00561-7
92. Jiang Z, Peng Z, Wei Z, et al. A deep learning-based method enables the automatic and accurate assembly of chromosome-level genomes. Nucleic Acids Research. 2024;52(19):e92. doi:10.1093/nar/gkae789
93. Zhang J, Che Y, Liu R, Wang Z, Liu W. Deep learning–driven multi-omics analysis: enhancing cancer diagnostics and therapeutics. Briefings in Bioinformatics. 2025;26(4). doi:10.1093/bib/bbaf440
94. Bilbao A. The future of a myriad of accelerated biodiscoveries lies in AI‐Powered mass spectrometry and multiomics integration. Journal of Mass Spectrometry. 2025;60(8):e5157. doi:10.1002/jms.5157
95. Ouhmouk M, Baichoo S, Abik M. Challenges in AI-driven multi-omics data analysis for Oncology: Addressing dimensionality, sparsity, transparency and ethical considerations. Informatics in Medicine Unlocked. 2025;57:101679. doi:10.1016/j.imu.2025.101679
96. Xu Y, Liu X, Cao X, et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation. 2021;2(4):100179. doi:10.1016/j.xinn.2021.100179
97. Koukaras C, Hatzikraniotis E, Mitsiaki M, Koukaras P, Tjortjis C, Stavrinides SG. Revolutionising Educational Management with AI and Wireless Networks: A Framework for Smart Resource Allocation and Decision-Making. Applied Sciences. 2025; 15(10):5293. https://doi.org/10.3390/app15105293
98. UNESCO. What You Need to Know About Digital Education. United Nations Educational, Scientific and Cultural Organization. 2024. Available online: https://www.unesco.org/en/digital-education/need-know (accessed on 20 March 2025).
99. World Economic Forum. Shaping the Future of Learning: The Role of AI in Education 4.0. World Economic Forum. 2024. Available online: https://www.weforum.org/publications/shaping-the-future-of-learning-the-role-of-ai-in-education-4-0/ (accessed on 21 March 2025).
100. Silva-da Nóbrega, P.I.; Chim-Miki, A.F.; Castillo-Palacio, M. A Smart Campus Framework: Challenges and Opportunities for Education Based on the Sustainable Development Goals. Sustainability 2022, 14, 9640.
101. Jamaica, N.J.; Tagbo, S. Artificial Intelligence in Educational Management for Enhanced Administrative Effectiveness in Rivers State Universities. Int. J. Educ. Manag. Rivers State Univ. 2025, 1, 213–236.
102. Villegas-Ch, W.; Palacios-Pacheco, X.; Román-Cañizares, M. An Internet of Things Model for Improving Process Management on University Campus. Future Internet 2020, 12, 162.
103. Dong, Z.Y.; Zhang, Y.; Yip, C.; Swift, S.; Beswick, K. Smart campus: Definition, framework, technologies, and services. IET Smart Cities 2020, 2, 43–54.
104. Han, L.; Long, X.; Wang, K. The analysis of educational informatization management learning model under the internet of things and artificial intelligence. Sci. Rep. 2024, 14, 17811.
105. Jia, W.; Li, X.; Huang, W.; Wang, H.; Zheng, Y.; Wang, H.; Mao, Z.; Tang, T. Smart Education Under 5G+. In Proceedings of the 2021 11th International Conference on Information Technology in Medicine and Education (ITME), Wuyishan, China, 19–21 November 2021; pp. 582–585.
106. Shi, F.; Ning, H.; Huangfu, W.; Zhang, F.; Wei, D.; Hong, T.; Daneshmand, M. Recent Progress on the Convergence of the Internet of Things and Artificial Intelligence. IEEE Netw. 2020, 34, 8–15.
107. Ahmad, I.; Shahabuddin, S.; Sauter, T.; Harjulya, E.; Kumar, T.; Meisel, M.; Juntti, M.; Ylianttila, M. The Challenges of Artificial Intelligence in Wireless Networks for the Internet of Things: Exploring Opportunities for Growth. IEEE Ind. Electron. Mag. 2021, 15, 16–29.
108. Sneesl, R.; Jusoh, Y.Y.; Jabar, M.A.; Abdullah, S.; Bukar, U.A. Factors Affecting the Adoption of IoT-Based Smart Campus: An Investigation Using Analytical Hierarchical Process (AHP). Sustainability 2022, 14, 8359.
109. Min-Allah, N.; Alrashed, S. Smart campus—A sketch. Sustain. Cities Soc. 2020, 59, 102231.
110. Polin, K.; Yigitcanlar, T.; Limb, M.; Washington, T. The Making of Smart Campus: A Review and Conceptual Framework. Buildings 2023, 13, 891.
111. Fishman V, Kuratov Y, Shmelev A, et al. GENA-LM: a family of open-source foundational DNA language models for long sequences. Nucleic Acids Research. 2025;53(2). doi:10.1093/nar/gkae1310
