Developing AI algorithms to analyse genomic data for disease diagnosis, personalised medicine and genome editing
الموضوعات : Biotechnological Journal of Environmental Microbiology
Abdul Razak Mohamed Sikkander
1
,
Joel J. P. C.Rodrigues Rodrigues
2
,
Hala S. Abuelmakarem
3
,
Manoharan Meena
4
1 - Department of Chemistry, Velammal Engineering College, Chennai -600066 Tamilnadu INDIA
2 - National Institute of Telecommunications (Inatel), Santa Rita do Sapuca´ı, MG, Brazil; Instituto de Telecomunica¸c˜oes, Portugal; Federal University of Piau´ı (UFPI), Teresina, PI, Brazil
3 - Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
4 - Department of Chemistry, R.M.K. Engineering College, Kavaraipettai, Chennai-India
الکلمات المفتاحية: Artificial intelligence, genomic data, disease diagnosis, personalized medicine, genome editing, deep learning, variant annotation,
ملخص المقالة :
The advent of artificial intelligence (AI) has ushered in a transformative era in genomic medicine, enabling the analysis of vast and complex genomic datasets for disease diagnosis, personalized medicine and genome editing. This paper explores the development and application of AI algorithms—spanning machine learning, deep learning and generative models—in interpreting genomic sequences, classifying variants, predicting phenotypes and guiding precision therapies. We review the foundational technologies, map current methodologies and present a hypothetical dataset illustrating algorithmic workflow and outcomes. The results highlight improvements in diagnostic yield, stratification for personalized treatment and identification of editing targets, while also outlining persistent challenges such as data bias, interpretability, regulatory hurdles and ethical concerns. The discussion underscores how AI-driven genomics is transitioning from research to clinical utility, and identifies future perspectives including multimodal data integration, real-time genome editing feedback loops and equitable deployment across populations. In conclusion, while significant barriers remain, the synergy of AI and genomics offers unprecedented promise for earlier diagnosis, tailored treatments and refined genome editing applications—if guided by robust methodology, transparency and ethical frameworks.
1. Isaic A, Motofelea N, Hoinoiu T, Motofelea AC, Leancu IC, Stan E, Gheorghe SR, Dutu AG, Crintea A. Next-Generation Sequencing: A Review of Its Transformative Impact on Cancer Diagnosis, Treatment, and Resistance Management. Diagnostics. 2025; 15(19):2425. https://doi.org/10.3390/diagnostics151924
2. Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263.
3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249.
4. Bizuayehu, H.M.; Ahmed, K.Y.; Kibret, G.D.; Dadi, A.F.; Belachew, S.A.; Bagade, T.; Tegegne, T.K.; Venchiarutti, R.L.; Kibret, K.T.; Hailegebireal, A.H.; et al. Global Disparities of Cancer and Its Projected Burden in 2050. JAMA Netw. Open 2024, 7, e2443198.
5. Yazbeck, V.Y.; Villaruz, L.; Haley, M.; Socinski, M.A. Management of Normal Tissue Toxicity Associated With Chemoradiation (Primary Skin, Esophagus, and Lung). Cancer J. 2013, 19, 231–237.
6. Soldà G, Asselta R. Applying artificial intelligence to uncover the genetic landscape of coagulation factors. Journal of Thrombosis and Haemostasis. 2025;23(4):1133-1145. doi:10.1016/j.jtha.2024.12.030
7. Chen, YM., Hsiao, TH., Lin, CH. et al. Unlocking precision medicine: clinical applications of integrating health records, genetics, and immunology through artificial intelligence. J Biomed Sci 32, 16 (2025). https://doi.org/10.1186/s12929-024-01110-w
8. Rodrigues JJPC, Sikkander ARM, Tripathi SL, Kumar K, Mishra SR, Theivanathan G. Healthcare applications of computational genomics. In: Elsevier eBooks. ; 2025:259-278. doi:10.1016/b978-0-443-30080-6.00012-2
9. Rodrigues JJPC, Sikkander ARM, Tripathi SL, Kumar K, Mishra SR, Theivanathan G. Artificial intelligence’s applicability in cardiac imaging. In: Elsevier eBooks. ; 2025:181-195. doi:10.1016/b978-0-443-30080-6.00006-7
10. Sikkander ARM, Tripathi SL, Theivanathan G. Extensive sequence analysis: revealing genomic knowledge throughout various domains. In: Elsevier eBooks. ; 2025:17-30. doi:10.1016/b978-0-443-30080-6.00007-9
11. Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering. 2024; 11(4):337. https://doi.org/10.3390/bioengineering11040337
12. Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38.
13. McCorduck, P.; Cfe, C. Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence; CRC Press: Boca Raton, FL, USA, 2004.
14. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.
15. Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies; WW Norton & Company: New York, NY, USA, 2014.
16. Russell, S.J.; Norvig, P. Artificial Intelligence a Modern Approach; Pearson: London, UK, 2010.
17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
18. Wang, F.; Preininger, A. AI in health: State of the art, challenges, and future directions. Yearb. Med. Inform. 2019, 28, 16–26.
19. DuBois, K.N. Deep medicine: How artificial intelligence can make healthcare human again. Perspect. Sci. Christ. Faith 2019, 71, 199–201.
20. Davenport, T.H. The AI Advantage: How to Put the Artificial Intelligence Revolution to Work; MIT Press: Cambridge, MA, USA, 2018.
21. Kaur, S.; Singla, J.; Nkenyereye, L.; Jha, S.; Prashar, D.; Joshi, G.P.; El-Sappagh, S.; Islam, M.S.; Islam, S.R. Medical diagnostic systems using artificial intelligence (ai) algorithms: Principles and perspectives. IEEE Access 2020, 8, 228049–228069.
22. Cortez, N. Digital Health: Scaling Healthcare to the World; Springer: Cham, Switzerland, 2018; pp. 249–269.
23. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510.
24. Kagiyama, N.; Shrestha, S.; Farjo, P.D.; Sengupta, P.P. Artificial intelligence: Practical primer for clinical research in cardiovascular disease. J. Am. Heart Assoc. 2019, 8, e012788.
25. Bardhan, I.; Chen, H.; Karahanna, E. Connecting systems, data, and people: A multidisciplinary research roadmap for chronic disease management. MIS Q. 2020, 44, 185–200.
26. Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020, 471, 61–71.
27. Binhowemel, S.; Alfakhri, M.; AlReshaid, K.; Alyani, A. Role of Artificial Intelligence in Diabetes Research Diagnosis and Prognosis: A Narrative Review. J. Health Inform. Dev. Ctries. 2023, 17, 1–12.
28. Guan, Z.; Li, H.; Liu, R.; Cai, C.; Liu, Y.; Li, J.; Wang, X.; Huang, S.; Wu, L.; Liu, D. Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Rep. Med. 2023, 4, 101213.
29. Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104, 101822.
30. Eloranta, S.; Boman, M. Predictive models for clinical decision making: Deep dives in practical machine learning. J. Intern. Med. 2022, 292, 278–295.
31. Younis H, Minghim R. Enhancing Cancer Classification from RNA Sequencing Data Using Deep Learning and Explainable AI. Machine Learning and Knowledge Extraction. 2025; 7(4):114. https://doi.org/10.3390/make7040114
32. World Health Organization. Cancer WHO Facts-Sheet. 2025. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 1 July 2025).
33. World Cancer Research Fund International. Worldwide Cancer Data | World Cancer Research Fund. 2025. Available online: https://www.wcrf.org/preventing-cancer/cancer-statistics/worldwide-cancer-data/ (accessed on 1 July 2025).
34. Verma, G.; Luciani, M.L.; Palombo, A.; Metaxa, L.; Panzironi, G.; Pediconi, F.; Giuliani, A.; Bizzarri, M.; Todde, V. Microcalcification morphological descriptors and parenchyma fractal dimension hierarchically interact in breast cancer: A diagnostic perspective. Comput. Biol. Med. 2018, 93, 1–6.
35. Alizadeh, E.; Castle, J.; Quirk, A.; Taylor, C.D.; Xu, W.; Prasad, A. Cellular morphological features are predictive markers of cancer cell state. Comput. Biol. Med. 2020, 126, 104044.
36. Sakamoto, S.; Kikuchi, K. Expanding the cytological and architectural spectrum of mucoepidermoid carcinoma: The key to solving diagnostic problems in morphological variants. Semin. Diagn. Pathol. 2024, 41, 182–189.
37. Guerroudji, M.A.; Hadjadj, Z.; Lichouri, M.; Amara, K.; Zenati, N. Efficient machine learning-based approach for brain tumor detection using the CAD system. IETE J. Res. 2024, 70, 3664–3678.
38. Mallon, E.; Osin, P.; Nasiri, N.; Blain, I.; Howard, B.; Gusterson, B. The basic pathology of human breast cancer. J. Mammary Gland. Biol. Neoplasia 2000, 5, 139–163.
39. Allison, K.H. Molecular pathology of breast cancer: What a pathologist needs to know. Am. J. Clin. Pathol. 2012, 138, 770–780.
40. Kurman, R.J.; Shih, I.M. Pathogenesis of ovarian cancer: Lessons from morphology and molecular biology and their clinical implications. Int. J. Gynecol. Pathol. 2008, 27, 151–160.
41. Beck, A.H.; Sangoi, A.R.; Leung, S.; Marinelli, R.J.; Nielsen, T.O.; Van De Vijver, M.J.; West, R.B.; Van De Rijn, M.; Koller, D. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 2011, 3, 108ra113.
42. Meirovitz, A.; Nisman, B.; Allweis, T.M.; Carmon, E.; Kadouri, L.; Maly, B.; Maimon, O.; Peretz, T. Thyroid hormones and morphological features of primary breast cancer. Anticancer. Res. 2022, 42, 253–261.
43. do Nascimento, R.G.; Otoni, K.M. Histological and molecular classification of breast cancer: What do we know? Mastology 2020, 30, 1–8.
44. Gamble, P.; Jaroensri, R.; Wang, H.; Tan, F.; Moran, M.; Brown, T.; Flament-Auvigne, I.; Rakha, E.A.; Toss, M.; Dabbs, D.J.; et al. Determining breast cancer biomarker status and associated morphological features using deep learning. Commun. Med. 2021, 1, 14.
45. Oyelade, O.N.; Ezugwu, A.E. A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram. Sci. Rep. 2022, 12, 5913.
46. Mohammed, M.; Mwambi, H.; Mboya, I.B.; Elbashir, M.K.; Omolo, B. A stacking ensemble deep learning approach to cancer type classification based on TCGA data. Sci. Rep. 2021, 11, 15626.
47. Triantafyllou, A.; Dovrolis, N.; Zografos, E.; Theodoropoulos, C.; Zografos, G.C.; Michalopoulos, N.V.; Gazouli, M. Circulating miRNA expression profiling in breast cancer molecular subtypes: Applying machine learning analysis in bioinformatics. Cancer Diagn. Progn. 2022, 2, 739.
48. Almarzouki, H.Z. Deep-learning-based cancer profiles classification using gene expression data profile. J. Healthc. Eng. 2022, 2022, 4715998. [Google Scholar] [CrossRef]
49. Aziz, R.M. Nature-inspired metaheuristics model for gene selection and classification of biomedical microarray data. Med. Biol. Eng. Comput. 2022, 60, 1627–1646.
50. Ogundokun, R.O.; Misra, S.; Douglas, M.; Damaševičius, R.; Maskeliūnas, R. Medical internet-of-things based breast cancer diagnosis using hyperparameter-optimized neural networks. Future Internet 2022, 14, 153.
51. Athanasopoulou K., Michalopoulou V.-I., Scorilas A., & Adamopoulos P. (2025). Integrating Artificial Intelligence in Next-Generation Sequencing: Advances, Challenges, and Future Directions. Current Issues in Molecular Biology, 47(6), 470. This review discusses how AI is being integrated into NGS pipelines, covering diagnostic and data-processing workflows.
52. Singh R., et al. (2025). Transforming Pharmacogenomics and CRISPR Gene Editing with the Power of Artificial Intelligence for Precision Medicine. Pharmaceutics, 17(5), 555. This paper examines the convergence of AI, pharmacogenomics, and CRISPR gene editing in personalized therapy.
53. Xin L., Huang C., Li H., et al. (2024). Artificial Intelligence for Central Dogma-Centric Multi-Omics: Challenges and Breakthroughs. arXiv pre-print. This work reviews AI/ML approaches for integrating multi-omics (genomics, transcriptomics, proteomics) data in disease research and precision medicine.
54. Tahir M., Norouzi M., Khan S.S., et al. (2025). Artificial Intelligence and Deep Learning Algorithms for Epigenetic Sequence Analysis: A Review for Epigeneticists and AI Experts. arXiv pre-print. Focuses on AI models applied to epigenomic sequence data (which is closely linked to genomic/diagnostic applications).
55. Al-Mahdi A. (2024). AI in Precision Medicine: Tailoring Treatments to Individual Genomes. Journal of Biochemistry and Biotechnology, 7(6), 235. This commentary/discussion article addresses how AI is being applied to individual-genome data for precision therapeutic applications.
56. Genomics & Informatics. (2024). Rare disease genomics and precision medicine. Vol 22, Article 28. This review covers how genomic technologies plus AI/ML are being used in rare‐disease diagnosis and precision treatment.
57. Akhtar Z.B. & Rawol A.T. (2025). Advanced Methods Towards Functional Genomics & Medical Informatics: The Artificial Intelligence (AI) and Integrated Computing Perspectives. Trends in Telemedicine & e-Health, 5(5), Article 000622. This article gives an overview of AI in functional genomics and medical informatics with relevance to diagnostic genomics.
58. Sun S. (2025). Advancing Genetic Engineering Through AI: Sequencing and Editing Innovations. In Proceedings of ICMMGH 2025 Workshop: Computational Modelling in Biology and Medicine. This work touches on how AI supports gene-editing workflows (target detection, editing optimization) allied to genomics.
59. Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions — Dixit S., Kumar A., Srinivasan K., Vincent PMDR & Ramu Krishnan N. (2024) Frontiers in Bioengineering & Biotechnology. This review covers AI models for gRNA design, off-target prediction, editing outcome modelling in the context of genome-editing technologies.
60. Revolutionizing personalized medicine with generative AI: a systematic review — Ghebrehiwet I., Zaki N., Damseh R. et al. (2024) Artificial Intelligence Review, 57:128. Focuses on deep generative / transformer-based models in precision/personalized medicine including genomic & multi-omic data.
61. A systematic analysis of deep learning in genomics and histopathology for precision oncology — Unger M., Kather J.N. (2024) BMC Medical Genomics, 17:48. Highlights deep-learning models integrating genomic and histopathology data for cancer diagnosis & precision oncology.
62. Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR — (2025) Journal of Translational Medicine, 23:153. Reviews AI/ML models aimed at CRISPR/gRNA design and outcome prediction, moving genome editing workflows into AI-driven space.
63. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine — (2022) although slightly earlier; but still relevant. Surveys ~32 ML/AI approaches applied to variant & expression data for personalized medicine.
64. Rare disease genomics and precision medicine — (2024) Genomics & Informatics, 22:28. Reviews how genomics + AI/ML are applied in rare-disease diagnosis and precision therapies.
65. Machine Learning in Genomics: Applications in Whole Genome Sequencing, Whole Exome Sequencing, Single‑Cell Genomics, and Spatial Transcriptomics — Adeyanju S.A., Ogunjobi T. (2024) MEDINformatics. Discusses ML applications in WGS/WES, single-cell & spatial transcriptomics relevant to genomic diagnosis pipelines.
66. A comprehensive review of AI applications in personalized medicine — Okolo C.A., Olorunsogo T., Babawarun O. (2024) International Journal of Science and Research Archive, 11(1), 2544–2549. Overview of the intersection of AI, genomics and personalized medicine.
67. Yang C. Fann et al. (2025) Unlocking precision medicine: clinical applications of integrating health records, genetics, and immunology through artificial intelligence. J. Biomed. Sci., 32:16.
68. “Revolutionizing personalized medicine using artificial intelligence: a meta-analysis of predictive diagnostics and their impacts on drug development” (2025) Clin. & Exp. Med. 25:255.
69. “Revolutionizing personalized medicine with generative AI: a systematic review” (2024) Artificial Intelligence Review, 57:128.
70. Dixit S., Kumar A., Srinivasan K., Vincent P.M.D.R. & Ramu Krishnan N. (2024) Advancing genome editing with artificial intelligence: opportunities, challenges, and future directions. Front. Bioeng. Biotechnol. 11:1335901.
71. Ali S., Qadri Y.A., Ahmad K., Lin Z., Leung M-F., Kim S.W., Vasilakos A.V., & Zhou T. (2025) Large Language Models in Genomics—A Perspective on Personalized Medicine. Bioengineering, 12(5):440.
72. Abdelwahab O. & Torkamaneh D. (2025) Artificial intelligence in variant calling: a review. Front. Bioinform., 5:1574359.
73. Aljarallah N.A., Dutta A.K., & Sait A.R.W. (2024) A Systematic Review of Genetics- and Molecular-Pathway-Based Machine Learning Models for Neurological Disorder Diagnosis. Int. J. Mol. Sci., 25(12):6422.
74. Shin, D. (2024) Prediction of metabolic syndrome using machine learning approaches based on genetic and nutritional factors: a 14-year prospective-based cohort study. BMC Med Genomics, 17:224.
75. Unger M. & Kather J.N. (2024) A systematic analysis of deep learning in genomics and histopathology for precision oncology. BMC Med Genomics, 17:48.
76. Chen L., Liu G. & Zhang T. (2024) Integrating machine learning and genome editing for crop improvement. aBIOTECH, 5:262-277.
77. HumGenomics (2024) Harrison J.E. et al. Analysis of public perceptions on the use of artificial intelligence in genomic medicine. Hum Genomics, 18:128.
