Comparison of Different Extraction Methods from Ganoderma lucidum IBRC-M 30306 and Evaluating on Multi-resistant Clinical Isolates of Pseudomonas aeruginosa
الموضوعات : Biotechnological Journal of Environmental Microbiology
Aida Alipashazadeh
1
,
Golchehr Pourmohamadi
2
,
Hamid Moghimi
3
1 - Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
2 - Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
3 - Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran
الکلمات المفتاحية: Antimicrobial, Polysaccharides, Terpenoids, Ganoderma. Lucidum, Pseudomonas aeruginosa.,
ملخص المقالة :
Some mushrooms have been traditionally used as medicinal components for treating diseases. Ganoderma lucidum contains bioactive components with antibacterial activities. In this research, various techniques were employed to extract terpenoids and polysaccharides from Ganoderma lucidum, and the soxhlet method proved to be the most effective. In addition, the antibacterial effect of the extracted terpenoids and polysaccharides was evaluated against strains such as multi-drug resistant (MDR) Pseudomonas. The results showed that MIC was 0.4-1.7 and 3.75-7.5 mgml-1, and MBC was 3.43-6.875 and 15-30 mgml-1 for terpenoid and polysaccharide extracts, respectively. In addition, the biofilm formation inhibitory concentrations of polysaccharide extracts against the urinary tract, wound, respiratory system, and standard samples were 0.937, 0.937, 0.46, and 0.23 mgml-1, respectively. In terms of free radical scavenging activity, the IC50 values for the polysaccharide and terpenoid extracts were 647.76 and 97.194 μgml-1, respectively. Both extracts demonstrated antibacterial properties, with the polysaccharide extract showing stronger antibacterial activity than the terpenoid extract. Terpenoid extract also indicated higher antioxidant properties. The findings revealed that extracts from Ganoderma lucidum may be effective therapeutic agents, particularly against challenging infections like those caused by Pseudomonas.
Adebayo, E. A., et al. (2018). Comparative study of antioxidant and antibacterial properties of the edible mushrooms Pleurotus levis, P. ostreatus, P. pulmonarius and P. tuber-regium. International Journal of Food Science & Technology, *53*(5), 1316–1330. https://doi.org/10.1111/ijfs.13712
Ahmad, M. F., et al. (2021). Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. International Journal of Biological Macromolecules, *187*, 769–779. https://doi.org/10.1016/J.IJBIOMAC.2021.06.122
Ahmad, M. F., Alsayegh, A. A., Ahmad, F. A., et al. (2024). Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon, *10*(3), e25607. https://doi.org/10.1016/j.heliyon.2024.e25607
Araújo, L. B. D. C., et al. (2013). Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidum by UV-VIS spectrophotometry. Revista Brasileira de Farmacognosia, *23*(5), 736–742. https://doi.org/10.1590/S0102-695X2013000500004
Aziz, M. A. (2015). Qualitative phytochemical screening and evaluation of anti-inflammatory, analgesic and antipyretic activities of Microcos paniculata barks and fruits. Journal of Integrative Medicine, *13*(3), 173–184. https://doi.org/10.1016/S2095-4964(15)60179-0
Bal, C. (2019). Antioxidant and antimicrobial capacities of Ganoderma lucidum. Journal of Bacteriology & Mycology: Open Access, *7*(1), 5–7. https://doi.org/10.15406/jbmoa.2019.07.00232
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, *6*(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Berger, A., et al. (2004). Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs. Lipids in Health and Disease, *3*, 2. https://doi.org/10.1186/1476-511X-3-2
B., B., M., B., J., Z., & L, Z.-B. (2007). Ganoderma lucidum and its pharmaceutically active compounds. Biotechnology Annual Review, *13*, 265–301. https://doi.org/10.1016/S1387-2656(07)13010-6
Chen, Y., et al. (2012). An effective method for deproteinization of bioactive polysaccharides extracted from lingzhi (Ganoderma atrum). Food Science and Biotechnology, *21*(1), 191–198. https://doi.org/10.1007/s10068-012-0024-2
Cherian, E., Patani, G., Sudheesh, N. P., & Janardhanan, K. K. (2009). Free-radical scavenging and mitochondrial antioxidant activities of reishl-ganoderma lucjdum (curt: Fr) p. karst and arogyapacha-trichopus zeylanicus gaertn extracts. Journal of Basic and Clinical Physiology and Pharmacology, *20*(4), 289–308. https://doi.org/10.1515/JBCPP.2009.20.4.289
Clinical and Laboratory Standards Institute (CLSI). (2020). M100Ed30 | Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition.
Constantin, M., Răut, I., Suica-Bunghez, R., Firinca, C., Radu, N., Gurban, A.-M., Preda, S., Alexandrescu, E., Doni, M., & Jecu, L. (2023). Ganoderma lucidum-Mediated Green Synthesis of Silver Nanoparticles with Antimicrobial Activity. Materials, *16*(11), 4261. https://doi.org/10.3390/ma16114261
Cör, D., Knez, Ž., & Hrnčič, M. K. (2018). Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: A review. Molecules, *23*(3), 649. https://doi.org/10.3390/molecules23030649
Cuesta, G., Suarez, N., Bessio, M. I., Ferreira, F., & Massaldi, H. (2003). Quantitative determination of pneumococcal capsular polysaccharide serotype 14 using a modification of phenol-sulfuric acid method. Journal of Microbiological Methods, *52*(1), 69–73. https://doi.org/10.1016/S0167-7012(02)00151-3
Cui, Y., Kim, D. S., & Park, K. C. (2005). Antioxidant effect of Inonotus obliquus. Journal of Ethnopharmacology, *96*(1–2), 79–85. https://doi.org/10.1016/j.jep.2004.08.037
Dadgostar, P. (2019). Antimicrobial resistance: implications and costs. Infection and Drug Resistance, *12*, 3903–3910. https://doi.org/10.2147/IDR.S234610
Dahiya, P., & Purkayastha, S. (2012). Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian Journal of Pharmaceutical Sciences, *74*(5), 443–450. https://doi.org/10.4103/0250-474X.108420
Elkhateeb, W. A., et al. (2021). Anti-human colon carcinoma activities of the crude extract of a Japanese Ganoderma spp. Egyptian Pharmaceutical Journal, *20*(2), 102–110. https://doi.org/10.4103/epj.epj_61_20
Ferreira, I. C. F. R., et al. (2015). Chemical features of Ganoderma polysaccharides with antioxidant, antitumor, and antimicrobial activities. Phytochemistry, *114*, 38–55. https://doi.org/10.1016/j.phytochem.2014.10.011
Fic, E., Kedracka-Krok, S., Jankowska, U., Pirog, A., & Dziedzicka-Wasylewska, M. (2010). Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis, *31*(21), 3573–3579. https://doi.org/10.1002/elps.201000197
Ghorai, N., Ghorai, N., Chakraborty, S., Gucchait, S., Saha, S. K., & Biswas, S. (2012). Estimation of total Terpenoids concentration in plant tissues using a monoterpene, Linalool as standard reagent. Protocol Exchange. https://doi.org/10.1038/protex.2012.055
Gong, L. L., et al. (2020). Purification, characterization, and bioactivity of two new polysaccharide fractions from Thelephora ganbajun mushroom. Journal of Food Biochemistry, *44*(1), e13092. https://doi.org/10.1111/jfbc.13092
Haney, E. F., Trimble, M. J., & Hancock, R. E. W. (2021). Microtiter plate assays to assess antibiofilm activity against bacteria. Nature Protocols, *16*(5), 2615–2632. https://doi.org/10.1038/s41596-021-00515-3
Heleno, S. A., et al. (2013). Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food and Chemical Toxicology, *58*, 95–100. https://doi.org/10.1016/J.FCT.2013.04.025
Huang, S. quan, & Ning, Z. xiang. (2010). Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. International Journal of Biological Macromolecules, *47*(3), 336–341. https://doi.org/10.1016/j.ijbiomac.2010.03.019
Islam, M., Jahangir, C. A., Rahi, M., Hasan, M., Sajib, S. A., Hoque, K. M., & Reza, M. A. (2020). In-vivo antiproliferative activity of Morus latifolia leaf and bark extracts against Ehrlich's ascites carcinoma. Toxicology Research, *36*(1), 79–88. https://doi.org/10.1007/s43188-019-00009-1
Jakubczyk, D., & Dussart, F. (2020). Selected fungal natural products with antimicrobial properties. Molecules, *25*(4), 911. https://doi.org/10.3390/molecules25040911
Kan, Y., Chen, T., Wu, Y., Wu, J., & Wu, J. (2015). Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. International Journal of Biological Macromolecules, *72*, 151–157. https://doi.org/10.1016/j.ijbiomac.2014.07.056
Kang, Q., et al. (2019). Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. International Journal of Biological Macromolecules, *124*, 1137–1144. https://doi.org/10.1016/J.IJBIOMAC.2018.11.215
Kao, C. H. J., Jesuthasan, A. C., Bishop, K. S., Glucina, M. P., & Ferguson, L. R. (2013). Anti-cancer activities of Ganoderma lucidum: Active ingredients and pathways. Functional Foods in Health and Disease, *3*(2), 48–65. https://doi.org/10.31989/FFHD.V3I2.65
Lin, Z., & Yang, B. (2019). Ganoderma and Health (Vol. 1182). Springer Singapore. https://doi.org/10.1007/978-981-13-6105-6
Mehta, S., & Jandaik, S. (2012). In vitro comparative evaluation of antibacterial activity of fruiting body and mycelial extracts of Ganoderma lucidum against pathogenic bacteria. Journal of Pure and Applied Microbiology, *66*(4), 1997–2001.
Mishra, J., et al. (2018). Antibacterial Natural Peptide Fractions from Indian Ganoderma lucidum. International Journal of Peptide Research and Therapeutics, *24*(4), 543–554. https://doi.org/10.1007/s10989-017-9643-z
Nakagawa, T., et al. (2018). Changes in content of triterpenoids and polysaccharides in Ganoderma lingzhi at different growth stages. Journal of Natural Medicines, *72*(3), 734–744. https://doi.org/10.1007/s11418-018-1213-y
Oluba, O. M. (2019). Ganoderma terpenoid extract exhibited anti-plasmodial activity by a mechanism involving reduction in erythrocyte and hepatic lipids in Plasmodium berghei infected mice. Lipids in Health and Disease, *18*(1), 1–9. https://doi.org/10.1186/s12944-018-0951-x
Orole, O. (2016). GC-MS Evaluation, Phytochemical and Antinutritional Screening of Ganoderma lucidum. Journal of Advances in Biology & Biotechnology, *5*(4), 1–10. https://doi.org/10.9734/JABB/2016/24261
Peng, Y., Han, B., Liu, W., & Zhou, R. (2016). Deproteinization and structural characterization of bioactive exopolysaccharides from Ganoderma sinense mycelium. Separation Science and Technology, *51*(2), 359–369. https://doi.org/10.1080/01496395.2015.1086375
Przybyłek, I., & Karpiński, T. M. (2019). Antibacterial properties of propolis. Molecules, *24*(11), 2047. https://doi.org/10.3390/molecules24112047
Quereshi, S., Pandey, A. K., & Sandhu, S. S. (2010). Evaluation of antibacterial activity of different Ganoderma lucidum extracts. People's Journal of Scientific Research, *3*(1), 9–13. https://www.pjsr.org/abstract-PDF/Dr. Sadaf Qureshi.pdf
Rahman, A., Sitepu, I. R., Tang, S. Y., & Hashidoko, Y. (2010). Salkowski's reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Bioscience, Biotechnology, and Biochemistry, *74*(11), 2202–2208. https://doi.org/10.1271/bbb.100360
Rajesh, K., & Dhanasekaran, D. (n.d.). Open Access Full Text Article Phytochemical Screening and Biological Activity of Medicinal Mushroom Ganoderma Sp. Retrieved from [Journal Source]
Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural Products as Platforms to Overcome Antibiotic Resistance. Chemical Reviews, *117*(19), 12415–12474. https://doi.org/10.1021/acs.chemrev.7b00283
Ryu, D. H., et al. (2021). Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology. Food Chemistry, *335*, 127645. https://doi.org/10.1016/J.FOODCHEM.2020.127645
Saavedra Plaza, D. C., et al. (2020). A comparative study of extraction techniques for maximum recovery of bioactive compounds from Ganoderma lucidum spores. Revista Colombiana de Ciencias Químico-Farmacéuticas, *49*(1). https://doi.org/10.15446/RCCIQUIFA.V49N1.84456
Seedevi, P., et al. (2019). Chemical structure and biological properties of a polysaccharide isolated from Pleurotus sajor-caju. RSC Advances, *9*(35), 20472–20482. https://doi.org/10.1039/c9ra02977j
Shao, P., Xuan, S., Wu, W., & Qu, L. (2019). Encapsulation efficiency and controlled release of Ganoderma lucidum polysaccharide microcapsules by spray drying using different combinations of wall materials. International Journal of Biological Macromolecules, *125*, 962–969. https://doi.org/10.1016/j.ijbiomac.2018.12.153
Shiao, M. S. (2003). Natural products of the medicinal fungus Ganoderma lucidum: Occurrence, biological activities, and pharmacological functions. Chemical Record, *3*(3), 172–180. https://doi.org/10.1002/tcr.10058
Shomali, N., Onar, O., Cihan, A. C., Akata, I., & Yildirim, O. (2019). Antioxidant, anticancer, antimicrobial, and antibiofilm properties of the culinary-medicinal fairy ring mushroom, marasmius oreades (Agaricomycetes). International Journal of Medicinal Mushrooms, *21*(6), 571–582. https://doi.org/10.1615/IntJMedMushrooms.2019030874
Skalicka-Woźniak, K., et al. (2012). Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Societatis Botanicorum Poloniae, *81*(1), 17–21. https://doi.org/10.5586/asbp.2012.001
Taşkin, H., Kafkas, E., Çakiroǧlu, Ö., & Büyükalaca, S. (2013). Determination of volatile aroma compounds of Ganoderma lucidum by gas chromatography mass spectrometry (HS-GC/MS). African Journal of Traditional, Complementary and Alternative Medicines, *10*(2), 353–355. https://doi.org/10.4314/ajtcam.v10i2.22
Walker, R. D. (1999). Standards for antimicrobial susceptibility testing. American Journal of Veterinary Research, *60*(9), 1034.
Wang, H., & Ng, T. B. (2006). Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides, *27*(1), 27–30. https://doi.org/10.1016/j.peptides.2005.06.009
Wen, L., Sheng, Z., Wang, J., Jiang, Y., & Yang, B. (2021). Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity. Food Chemistry, *356*, 131374. https://doi.org/10.1016/J.FOODCHEM.2021.131374
Wu, S., Zhang, S., Peng, B., Tan, D., Wu, M., Wei, J., Wang, Y., & Luo, H. (2024). Ganoderma lucidum: a comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Science and Human Wellness, *13*(2), 568–596.
Yoon, S. Y., Eo, S. K., Kim, Y. S., Lee, C. K., & Han, S. S. (1994). Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Archives of Pharmacal Research, *17*(6), 438–442. https://doi.org/10.1007/BF02979122
Zhao, R., Chen, Q., & He, Y. min. (2018). The effect of Ganoderma lucidum extract on immunological function and identify its anti-tumor immunostimulatory activity based on the biological network. Scientific Reports, *8*(1), 12680. https://doi.org/10.1038/s41598-018-30881-0
Zhong, Y., Tan, P., Lin, H., Zhang, D., Chen, X., Pang, J., & Mu, R. (2024). A Review of Ganoderma lucidum Polysaccharide: Preparations, Structures, Physicochemical Properties and Application. Foods, *13*(17), 2665. https://doi.org/10.3390/foods13172665
Zhou, X.-W. (2017). Cultivation of Ganoderma lucidum. In Edible Medicinal Mushrooms (pp. 385–413). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119149446.CH18
Zygler, A., Słomińska, M., & Namieśnik, J. (2012). Soxhlet extraction and new developments such as soxtec. In Comprehensive Sampling and Sample Preparation (Vol. 2, pp. 65–82). Academic Press. https://doi.org/10.1016/B978-0-12-381373-2.00037-5
