تاثیر یک دوره تمرین ترکیبی بر شاخصهای CK-MB و تروپونین I در بیماران قلبی عروقی
الموضوعات : Exercise Physiology and Sport Sciences
سیدمازیار سیدعلیخانی
1
,
عبدالعلی بنائی فر
2
,
شهرام سهیلی
3
,
سجاد ارشدی
4
,
وحید ایمانی پور
5
1 - گروه فیزیولوژی ورزش، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.
2 - گروه فیزیولوژی ورزش، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.
3 - عضو هئیت علمی واحد شهر قدس
4 - گروه فیزیولوژی ورزش، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
5 - عضو هئیت علمی دانشگاه آزاد اسلامی واحد پرند
الکلمات المفتاحية: تمرین ترکیبی, تروپونین I , CK-MB, بیماری قلبی عروقی,
ملخص المقالة :
بیماریهای قلبی عروقی شایعترین علت مرگ و میر افراد در اغلب کشورهای جهان است. از سطوح بالای سرمی بیومارکرهای قلبی از جملهCK-MB و تروپونینI در تشخیص آسیب بافت قلب استفاده میشود. از مهمترین عوامل موثر در کاهش این بیماریها، ورزش و فعالیت جسمانی است. بر این اساس، هدف از مطالعه حاضر، بررسی اثر هشت هفته تمرین ترکیبی بر سطوحCK-MB و تروپونین I در بیماران قلبی عروقی است.
در این کارآزمایی بالینی با طراحی تصادفی، ۲۴ بیمار مبتلا به بیماریهای قلبی عروقی با میانگین سنی 8±59 سال و میانگین شاخص توده بدنی42/0±76/27 به صورت تصادفی به دو گروه تمرین ترکیبی و کنترل تقسيم شدند. گروه تمرینی به مدت هشت هفته و هر هفته سه جلسه طبق پروتکل مورد نظر، تمرینات هوازی و مقاومتی را انجام دادند. نمونهگیری خون بهصورت وریدی در دو مرحله پیش و پس از مداخله انجام شد. توزیع نرمال دادهها با استفاده از آزمون شاپیرو-ویلک ارزیابی گردید. جهت مقایسه تغییرات بینگروهی، از آزمون تحلیل کوواریانس همراه با آزمون تعقیبی بونفرونی استفاده شد.
نتایج نشان داد که تمرین ترکیبی سبب تغییرات معناداری در شاخص(p=0.03) CK-MB نسبت به گروه کنترل گردید؛ هر چند که تغییرات معناداری در شاخص تروپونین I مشاهده نشد(p=0.3) . افزایش شاخص CK-MB و عدم تغییر معنیدار در شاخص تروپونین I در بیماران، میتواند ناشی از فشار تمرین ترکیبی، ایجاد استرس متابولیک و بهبود ظرفیت عملکردی قلب و عروق باشد.
[1] Aengevaeren, V.L., Baggish, A.L., Chung, E.H., George, K., Kleiven, Ø., Mingels, A.M., et al. (2021). Exercise-induced cardiac troponin elevations: from underlying mechanisms to clinical relevance. Circulation, 144(24):955-972.
[2] Aengevaeren, V.L., Hopman, M.T., Thompson, P.D., Bakker, E.A., George, K.P., Thijssen, D.H. (2019). Exercise-induced cardiac troponin I increase and incident mortality and cardiovascular events. Circulation, 140(10):804-14.
[3] Al-Joubouri, Z.T., Shamran, S.G., Jabbar, R.M., Ajeena, E.G. (2024). Assessment of Troponin Levels as a Biomarker of Myocardial Injury in Patients with Fatal Covid-19 for the Period 2020 to 2022: A Literature Review. Kufa Journal for Nursing Sciences, 14(2): 41-53.
[4] Amini-Najafabadi, B., Keshavarz, S., Asgary, S., Azarbarzin, M. (2021). The effect of 8 week of aerobic exercise on heart cells specific biochemical indicators in women with type 2 diabetes mellitus: A randomized clinical trial. Journal of Isfahan Medical School, 38(598):824-830.
[5] Anderson, L., Thompson, D.R., Oldridge, N., Zwisler, A.D., Rees, K., Martin, N., Taylor, R.S. (2016). Exercise‐based cardiac rehabilitation for coronary heart disease. Cochrane Database of Systematic Reviews, 2016(1).
[6] Aujla, R., Zubair, M., Patel, R. (2024). Creatine phosphokinase. StatPearls.
[7] Baird, M.F., Graham, S.M., Baker, J.S., Bickerstaff, G.F. (2012). Creatine‐kinase‐and exercise‐related muscle damage implications for muscle performance and recovery. Journal of nutrition and metabolism, 2012(1):960363.
[8] Bowman, J.D., Lindert, S. (2019). Computational studies of cardiac and skeletal troponin. Frontiers in molecular biosciences, 6:68.
[9] D’Alleva, M., Sanz, J., Giovanelli, N., Graniero, F., Mari, L., Spaggiari, R., et al. (2025). The influence of prolonged aerobic exercise on cardiac, muscular, and renal biomarkers in trained individuals with obesity. European Journal of Applied Physiology,2025:1-6.
[10] Delfani, Z., Shahidi, F., Kashef, M., Namdari, M. (2022). Effect of Different Volumes of High-intensity Interval Trainingon Serum Troponin I and Creatine KinaseMB Levels in Patients After Myocardial Infarction. Iranian Journal of Endocrinology and Metabolism,24(1):24-33.
[11] Falahati, A., Arazi, H. (2024). Cardiac biomarker responses following high-intensity interval and continuous exercise: the influence of ACE-I/D gene polymorphism and training status in men. Physiological Genomics, 56(6): 436-444.
[12] Hamedchaman, N., Riahy, S. (2019). The effect of 8 weeks of combined, interval aerobic and continuous aerobic training on lipid profile, function and some cardiovascular inflammatory markers in 30-45 year-olds' militaries in cold and mountainous climates. Journal of Military Medicine, 21(6):606-617.
[13] Harrison, N., Favot, M., Levy, P. (2019). The role of troponin for acute heart failure. Current Heart Failure Reports, 16:21-31.
[14] Januzzi, J.R., Suchindran, S., Coles, A., Ferencik, M., Patel, M.R., Hoffmann, U., et al. (2019). High-sensitivity troponin I and coronary computed tomography in symptomatic outpatients with suspected CAD: insights from the PROMISE trial. Cardiovascular Imaging, 12(6):1047-1055.
[15] Kastner, T., Frohberg, F., Hesse, J., Wolfarth, B., Wuestenfeld, J.C. (2024). Exercise-induced troponin elevation in high-performance cross-country skiers. Journal of Clinical Medicine, 13(8):2335.
[16] Kunutsor, S.K., Laukkanen, J.A. (2024). Physical activity, exercise and adverse cardiovascular outcomes in individuals with pre-existing cardiovascular disease: a narrative review. Expert review of cardiovascular therapy, 2024 Mar 3;22(1-3):91-101.
[17] Lavie, C.J., Arena, R., Swift, D.L., Johannsen, N.M., Sui, X., Lee, D, et al. (2015). Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circulation research,117(2):207-219.
[18] Li, G., Lu, T., Shan, N. (2024). A Case of Pseudo-Elevation of CK-MB without Myocardial Infarction. Clinical Laboratory, 70(11).
[19] Mair, J., Lindahl, B., Hammarsten, O., Müller, C., Giannitsis, E., Huber, K. et al. (2018). How is cardiac troponin released from injured myocardium? European heart journal: acute cardiovascular care,7(6):553-560.
[20] Mohammadkhani, R., Ranjbar, K., Salehi, I., Komaki, A., Zarrinkalam, E., Amiri, P. (2023). Comparison of the preconditioning effect of different exercise training modalities on myocardial ischemia-reperfusion injury. PLoS One, 18(12): e295169.
[21] Nystoriak, M.A., Bhatnagar, A. (2018). Cardiovascular effects and benefits of exercise. Frontiers in cardiovascular medicine,5:408204.
[22] Oluboyo, A.O., Omon, E.A., Oluboyo, B.O. (2024). Evaluation of Cardiac, Liver and Renal Indices During a Short Term Exercise Among Young Male Adults in Ado-Ekiti, Nigeria. 2024.
[23] Pakdaman, M., Gravandi, S., Askari, R., Shafii, M., Khaleghi Muri, M., Bahariniya, S. (2020). Estimation of the economic burden of cardiovascular diseases in selected hospitals of Yazd in 2018. Qom University of Medical Sciences Journal, 14(7):58-68.
[24] Rahendza, F., Nursyahbani, R., Simanjuntak, J.P., Sakdiah, S., [editors]. Relationship of CK-MB Levels with Troponin T in Patient with Coronary Heart Disease at Siloam Hospital Jambi. Proceeding International Conference Health Polytechnic of Jambi;2023.
[25] Rangraz, E., Mirzaei, B., Nia, F.R. (2019). The effect of resistance training on serum levels of NT-proBNP, GDF-15, and markers of cardiac damage in the elderly males. International Journal of Applied Exercise Physiology,8(1):138-148.
[26] Riveland, E., Valborgland, T., Ushakova, A., Skadberg, Ø., Karlsen, T., Hole, T., et al. (2024). Exercise training and high‐sensitivity cardiac Troponin‐I in patients with heart failure with reduced ejection fraction. ESC Heart Failure,11(2):1121-1132.
[27] Riveland, E., Valborgland, T., Ushakova, A.I., Skadberg, Ø., Karlsen, T., Linke, A., et al. (2020). Plasma levels of troponin I is reduced after 12-week exercise training program in patients with uncomplicated heart failure. A substudy of the SMARTEX-HF study. European Heart Journal, 2020;41.
[28] Salmani Pour, M., Mehrabani, J., Mogharnasi, M., Hoseini, R., Damirchi, A. (2016). Effect of maximal aerobic exercise on changes of contractile biomarkers of myocardial (CK-MB and cTn-I) in the middle-aged men with metabolic syndrome. Tabari Biomedical Student Research Journal, 2(3):23-32.
[29] Schroeder, E.C., Franke, W.D., Sharp, R.L., Lee, D. (2019). Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PloS one,14(1): e0210292.
[30] Sharifzadeh, H., Monazami, A.A., Azizi, M. (2019). Effects of Acute Resistance Training on Biochemical Markers of Myocardial Injury (cTnT, cTnI, CK-MB) in Non-Athlete Women. Journal of Kermanshah University of Medical Sciences, 23(2).
[31] Shave, R., Baggish, A., George, K., Wood, M., Scharhag, J., Whyte, G., et al. (2010). Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. Journal of the American College of Cardiology, 56(3):169-176.
[32] Statistics NCfH. Multiple Cause of Death 2018-2022 on CDC WONDER Database. National Center for Health Statistics: Hyattsville, MD, USA. 2023.
[33] Tesema, G., George, M. (2021). Associations between cardiac troponin I and cardiovascular parameters after 12-week endurance training in young moderately trained amateur athletes. BMJ Open Sport & Exercise Medicine, 7(1): e001065.
[34] Tranchita, E., Murri, A., Grazioli, E., Cerulli, C., Emerenziani, G.P., Ceci, R., et al. (2022). The beneficial role of physical exercise on anthracyclines induced cardiotoxicity in breast cancer patients. Cancers, 14(9): 2288.
[35] van der Linden, N., Klinkenberg, L.J., Leenders, M., Tieland, M., Verdijk, L.B., Niens, M., et al. (2015). The effect of exercise training on the course of cardiac troponin T and I levels: three independent training studies. Scientific reports, 5(1):18320.
[36] Wang, X., Li, S., Xia, C., Meng, X., Li, Y., Weng, S., et al. (2024). Exercise-induced cardiac troponin elevations and cardiac ventricular dysfunction assessed by tissue Doppler echocardiography and speckle tracking among non-elite runners in Beijing marathon. Journal of Science and Medicine in Sport, 27(8): 508-514.
[37] World Health Organization. Cardiovascular diseases (CVDs). Retrieved April 30, 2025, from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[38] Zhang, Y., Liu, M., Zhang, C., Zou, Y., Kang, L., Song, L. (2024). Role of biomarkers of myocardial injury to predict adverse outcomes in hypertrophic cardiomyopathy. Circulation: Cardiovascular Quality and Outcomes, 17(2): e010243.
