DFT Investigations of Charge Transfer Complexes Formed between Naphthols with 1,3-Dinitrobenzene: Conformational, Structural, Electronic, Thermodynamic, and Spectroscopic Insights
الموضوعات :Vahideh Hadigheh-rezvan 1 , Hanieh Abdoli 2
1 - Ardabil branch, izlamic azad university
2 - Young Researchers and Elite Club, Ard. C., Islamic Azad University, Ardabil, Iran
الکلمات المفتاحية: CTC, dinitrobenzene, naphthol, NLO, electron donor, electron acceptor,
ملخص المقالة :
A charge transfer complex (CTC) is created through the interaction between a donor molecule and an acceptor molecule. This research delves into density functional theory (DFT) investigations focusing on the molecular structures, electronic properties, and spectroscopic analyses of CTCs formed by the interaction of 1-naphthol and 2-naphthol with 1,3-dinitrobenzene as a π-electron acceptor. These complexes have not been synthesized; this study helps for future experimental work. The study employs the B3LYP/6-311++G(d,p) method to explore aspects like conformational analysis of naphthols, energy gaps between rotamers, molecular structures, electronic distributions, electric moments, thermodynamic parameters, frontier molecular orbitals (FMOs), molecular electrostatic maps, optical characteristics, UV-Vis, and IR spectroscopy analysis of CTCs in the gas phase. The free rotation around the O-aryl for naphthols was examined, resulting in the identification of syn and anti-rotamers. Thermodynamic parameters suggested stability of the complexes, with non-spontaneous and exothermic creation processes. Electric moments indicated significant charge separation, suggesting potential for nonlinear optical applications. The absorption spectrum of CTCs exhibits specific bands representing transitions from the ground state to higher energy states, observable as absorbance peaks in UV-visible spectra.
[1] Mulliken R.S., Structures of a complex formed by halogen molecules with aromatic and oxygenated solvents, J. Amer. Chem. Soc., 1950, 72 (1), 600-608. https://doi.org/10021/ja01157a151.
[2] Alsanie, W.F., Alamri, A.S., Alyami, H., Alhomrani, M., Shakya, S., Habeeballah, H., Alkhatabi, H.A., Felimban, R.I., Alzahrani, A.S., Alhabeeb, A.A., Increasing the Efficacy of Seproxetine as an Antidepressant Using Charge–Transfer Complexes, Molecules, 2022, 27, 3290. https://doi.org/10.3390/molecules27103290.
[3] Darwish, I.A., Darwish, H.W., Ali, A.M., Almutairi, H.S., Spectrophotometric Investigations of Charge-transfer Complexes of Tyrosine Kinase Inhibitors with Iodine as a π-Electron Acceptor: Application to Development of Universal High-Throughput Microwell Assay for Their Determination in Pharmaceutical Formulations, Medicina, 2023, 59, 775. https://doi.org/10.3390/medicina59040775.
[4] T. Murata, Y. Morita, Y. Yakiyama, K. Fukui, H. Yamochi, G. Saito, K. Nakasuji, Hydrogen-Bond Interaction in Organic Conductors: Redox Activation, Molecular Recognition, Structural Regulation, and Proton Transfer in Donor−Acceptor Charge-Transfer Complexes of TTF-Imidazole, J. Am. Chem. Soc., 2007, 129, 35, 10837–10846. https://doi.org/10021/ja072607m
[5] Vahideh Hadigheh Rezvan, Jaber Salehzadeh, Exploring Charge Transfer Complexes of Fluoroquinolone Drugs and π-Acceptors (Picric Acid and 3,5-Dinitrobenzoic Acid): DFT Insights Into Electronic Interactions, Thermodynamic Stability, FMOs, and NLO Properties, ChemistrySelect, 2025, 10, 15, e202405137. https://doi.org/10002/slct.202405137
[6] V. Hadigheh Rezvan, DFT study of Molecular structure, and optical properties of charge-transfer complexes derived from Tetrathiafulualene and Tetracyanoquinodimethane derivatives, J. Chem. Reactivity Synthesis, 2021 11, 1, 6-11
[7] Nasrin Azizi Bala Beigloo, Vahideh Hadigheh Rezvan, Gholamreza Ebrahimzadeh-Rajaei, Ali Shamel, New Charge Transfer Complex between Melamine and 4-Nitrobenzoic Acid: Synthesis, Spectroscopic Characterization, and DFT Studies, J. Mol. Struc., 2024, 140469, https://doi.org/10016/j.molstruc.202440469.
[8] I.M. Khan, K. Alam, M.J. Alam, M. Ahmad, Spectrophotometric and photocatalytic studies of H-bonded charge-transfer complex of oxalic acid with imidazole: Single crystal XRD, experimental and DFT/TD-DFT studies, New J. Chem., 2019, 43 9039–9051. https://doi.org/10039/C9NJ00332K
[9] W. R. Wen, C. Yan, H. Yan, G. Pan, L. Wan, Donor/acceptor complex of triphenylene and trinitrotoluene on Au (111): a scanning tunneling microscopy study, Chem. Commun., 2011, 47 6915–6917. DOI: 10039/c1cc11358e
[10] T. Salzillo, A. Campos, M. Mas-Torrent, Solution-processed thin films of a charge-transfer complex for ambipolar field-effect transistors, J. Mater. Chem. C., 2019, 7 10257–10263. DOI https://doi.org/10039/C9TC03064F
[11] M.S. Refat, H.A. Didamony, K.M. A. El-Nour, I. Grabchev, L. El-Zayat, A.M.A. Adam, Spectroscopic characterizations on the N, N’-bis-alkyl derivatives of 1,4,6,8-naphthalenediimide charge-transfer complexes, Arab. J. Chem., 2011, 4:1, 83–97. DOI: 10016/j.arabjc.2010.06.024
[12] A.S. AL-Attas, M.M. Habeeb, D.S. AL-Raimi, Synthesis and spectroscopic studies of charge-transfer complexes between chloranilic acid and some heterocyclic amines in ethanol, J. Mol. Struct., 2009, 928, 158–170. http://dx.doi.org/10016/j.molstruc.2009.03.025
[13] Khawas, S., Laskar, S., Two New Spray Reagents for Detection of Amino Acids on Thin-Layer Plates, JPC-J Planar Chromat, 2003, 16, 165–166. https://doi.org/10556/JPC6.2003.25S.
[14] N. Margiotta, P. Papadia, F. Lazzaro, M. Crucianelli, F. De Angelis, C. Pisano, L. Vesci, G. Natile, Platinum-based antitumor drugs containing enantiomerically pure α-trifluoromethyl alanine as ligand, J. Med. Chem., 2005, 48, 7821–7828. https://doi.org/10021/jm0504003
[15] J. Zhang, W. Xu, P. Sheng, G. Zhao, D. Zhu, Organic Donor−Acceptor Complexes as Novel Organic Semiconductors, Acc. Chem. Res., 2017, 50:7, 1654–1662. DOI: 10021/acs.accounts.7b00124
[16] Amirah S. AL-Attas, M. M. Habeeb, M. T. Basha, Spectrophotometric and Conductimetric Studies of Charge-transfer Complexes of Some Pyrimidine Derivatives with Chloranilic Acid as p-Acceptor in Methanol, World J. Chem., 2007, 2 (1), 16-24,
[17] M. S. Subhani, N. K. Bhatti, M. Mohammad, A. Y. Khan. Tbitak, Spectroscopic Studies of Charge-Transfer Complexes of 2,3-Dichloro-5,6-Dicyano-P-Benzo-Quinone, Turk J. Chem., 2000, 24, 223 - 230.
[18] Asmaa A. Ibrahim, Spectrophotometric studies of a charge-transfer complex of 8-hydroxyquinoline with 1,4-benzoquinone, African J. Pure and Applied Chem., 2011, 5(16), 507-514. DOI: 10.5897/AJPAC11.043
[19] Ukoha O. Pius, Nwanisobi C. Gloria, Sevak N Khadatkar, A.G. Sinhe, V.M.Vaidya, Spectrophotometric determination of 4-aminobenzoic acid using charge-transfer complexation, Inte. J. Chem Tech Research, 2018, 11(02), 370-376. http://dx.doi.org/10.20902/IJCTR.201810244
[20] E. Krugly, D. Martuzevicius, M. Tichonovas, D. Jankunaite, I. Rumskaite, J. Sedlina, V. Racys, J. Baltrusaitis, I. Rumskaite, J. Sedlina, Decomposition of 2-naphthol in water using a non-thermal plasma reactor, Chem. Eng. J., 2015, 260 188–198. https://doi.org/10016/j.cej.2014.08.098
[21] L. Jie, C. Yu, P. Zhao, G. Chen, Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of -naphthol, Appl. Surf. Sci., 2012, 258, 9096–9102. https://doi.org/10016/j.apsusc.2012.06.022
[22] S. Yang, M. Gao, Z. Luo, Adsorption of 2-naphthol on the organo-montmorillonites modified by Gemini surfactants with different spacers, Chem. Eng. J., 2014, 256, 39–50. https://doi.org/10016/j.cej.2014.07.004
[23] Y.F. Lin, Y.H. Hu, Y.L. Jia, Z.C. Li, Y.J. Guo, Q.X. Chen, H.T. Lin, Inhibitory effects of naphthols on the activity of mushroom tyrosinase, Int. J. Biol. Macromol., 2012, 51, 32–36. https://doi.org/10016/j.ijbiomac.2012.04.026
[24] Zhang M, Deng YL, Liu C, Lu WQ, Zeng Q. Impacts of disinfection byproduct exposures on male reproductive health: Current evidence, possible mechanisms, and future needs, Chemosphere, 2023; 331, 138808. doi 10016/j.chemosphere.202338808.
[25] H.S. Shin, H.H. Lim, Simultaneous determination of 2-naphthol and 1-hydroxy pyrene in urine by gas chromatography-mass spectrometry, J. Chromatogr. B, 2011, 879, 489–494. https://doi.org/10016/j.jchromb.2011.01.009
[26] H. Kim, Y.D. Kim, H. Lee, T. Kawamoto, M. Yang, T. Katoh, Assay of 2-naphthol in human urine by high-performance liquid chromatography, J. Chromatogr. B, 1999, 734, 211–217. doi: 10016/s0378-4347(99)00350-3
[27] G. Zhu, P. Gai, Y. Yan, X. Zhang, J. Chen, Electrochemical sensor for naphthols based on gold nanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalized with SH--cyclodextrin, Anal. Chim. Acta, 2012, 723, 33–38. https://doi.org/10016/j.aca.2012.02.034
[28] S. Zhong, S.N. Tan, L. Ge, W. Wang, J. Chen, Determination of bisphenol A and naphthols in river water samples by capillary zone electrophoresis after cloud point extraction, Talanta, 2011, 85, 488–492. https://doi.org/10016/j.talanta.2011.04.009
[29] T.F. Tsai, M.R. Lee, Liquid-phase microextraction combined with liquid chromatography-electrospray tandem mass spectrometry for detecting diuretics in urine, Talanta, 2008, 75, 658–665. https://doi.org/10016/j.talanta.20071.058
[30] M.A. Farajzadeh, B. Feriduni, M.R.A. Mogaddam, Development of counter-current salting-out homogenous liquid-liquid extraction for isolation and preconcentration of some pesticides from aqueous samples, Anal. Chim. Acta, 2015, 885, 122–131. https://doi.org/10016/j.aca.2015.05.031
[31] F. Cai, W. Zhu, J.J. Ibrahim, G. Xiao, Liquid extraction of polyhydric alcohols from water using [A336][SCN] as a solvent, J. Chem. Thermodyn., 2015, 89, 35–40. https://doi.org/10016/j.jct.2015.04.033
[32] F. Omidi, M. Behbahani, M.K. Bojdi, S.J. Shahtaheri, Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica, J. Magn. Magn. Mater., 2015, 395, 213–220. https://doi.org/10016/j.jmmm.2015.07.093
[33] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2009).
[34] R. Dennington, T. Keith, J. Millam, in ed. S. Mission, Version 6, Semichem Inc., KS (2009).
[35] Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange., J. Chem. Physics, 1993, 98(7), 5648-5652. https://doi.org/10063/1.464913.
[36] Hehre, W. J., Ditchfield, R., Stewart, R. F., Self-Consistent Molecular-Orbital Methods. 12. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, J. Chem. Phys, 1972, 56(5), 2257-2261. https://doi.org/10063/1677527
[37] Runge, E., & Gross, E. K. U. Density-Functional Theory for Time-Dependent Systems, Physical Review Letters, 1984. 52(12), 997-1000. https://doi.org/10103/PhysRevLett.52.997
[38] K. Ganesh, C. Balraj, A. Satheshkumar, K. P. Elango, Spectroscopic studies on the formation of charge-transfer complexes of l-phenylalanine with 2,3,5-trichloro-6-alkoxy-1,4-benzoquinones in aqueous medium, Arabian J. Chem., 2019, 12, 4, 503-514. https://doi.org/10016/j.arabjc.20140.020.
[39] Teimouri, A.N., Chermahini, A., Taban, K., Dabbagh, H. Experimental and CIS, TD-DFT, ab Initio Calculations of Visible Spectra and the Vibrational Frequencies of Sulfonylazide-Azoic Dye. Spectrochimica Acta Part A, 2009, 72, 369-377. http://dx.doi.org/10016/j.saa.20080.006
[40] H. Rahman, M. Abdul Rub, S. Mahbub, Md. Tuhinur R. Joy, Shahed Rana, Md. Anamul Hoque, Spectroscopic and DFT studies of the charge-transfer complexation of iodine with aniline and its derivatives in carbon tetrachloride medium, J. Mol. Liq., 2022, 351, 118667. https://doi.org/10016/j.molliq.202218667.
[41] Veit M., Wilkins D.M., Yang Y., DiStasio R.A. Jr, Ceriotti M., Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles, J Chem Phys., 2020;153(2), 024113. DOI: 10063/5.0009106.
[42] Heitzer HM, Marks TJ, Ratner MA. Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials, J. Am. Chem. Soc., 2015, 137(22),7189-96. DOI: 10021/jacs.5b03301
[43] Sutradhar T., Misra A. The role of π-linkers and electron acceptors in tuning the nonlinear optical properties of BODIPY-based zwitterionic molecules, RSC Adv., 2020;10(66), 40300-40309. DOI: 10039/d0ra02193h.
[44] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, 1976.
[45] N. Azizi-Balabeigloo, V. Hadigheh-Rezvan, Gh. Ebrahimzadeh-Rajaei, A. Shamel, Spectral Measurements of a Novel Charge Transfer Complex Formed by a Heterocyclic Aromatic Amine and 1,4-Dinitrobenzene: A Combined Experimental and DFT Approach, Phys. Chem. Res., 2025, 13, No. 4, 701-720, DOI: 10.22036/pcr.2025.529463.2695
[46] Vahideh Hadigheh Rezvan, Charge transfer complexes: a review survey, Results in Chemistry 17 (2025) 102600 https://doi.org/10016/j.rechem.202502600
[47] O. Prasad, L. Sinha, N. Misra, V. Narayan, N. Kumar, J. Pathak, Molecular structure and vibrational study on 2,3-dihydro-1H-indene and its derivative 1H-indene-1,3(2H)-dione by density functional theory calculations, J. Mol. Str.: THEOCHEM, 2010, 940, 82–86. https://doi.org/10016/j.theochem.20090.011
[48] Ghrieb, Hana, Kadri, Mekki, Spectroscopic and computational investigation of a novel charge-transfer complex via hydrogen bonding between β-cyclodextrin with DDQ and TCNE: NBO, AIM, NLO, and DFT analysis, Egyptian J. Chem., 2022, 65, 8, 247-262, doi 10.21608/ejchem.202108057.4943
[49] M. Varukolu, M. Palnati, V. Nampally, S. Gangadhari, M. Vadluri, P. Tigulla, New Charge-transfer Complex between 4-Dimethylaminopyridine and DDQ: Synthesis, Spectroscopic Characterization, DNA Binding Analysis, and Density Functional Theory (DFT)/Time-Dependent DFT/Natural Transition Orbital Studies, ACS Omega, 2022, 7 (1), 810-822. DOI: 10021/acsomegac05464
[50] T. Kaya, C. Selçuki, N. Acar, A DFT and TDDFT investigation of interactions between 1-hydroxypyrene and aromatic amino acids, Computational and Theoretical Chem., 2015, 1073, 9-19. https://doi.org/10016/j.comptc.2015.09.009
[51] Weinhold, F. and Landis, C. R., Natural Bond Orbitals, J. American Chem. Soc., 2005, 127, 14057-14067. DOI: 10021/ja0531974
[52] Glendening, E. D., Landis, C. R., Weinhold, F. (NBO 7.0): Natural Bond Orbital Analysis Program, J. Computational Chem., 2019, 40(3), 223-231. DOI: 10002/jcc.25456.
[53] Weinhold, F., & Landis, C. R. "Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective." Cambridge University Press. (2001).
[54] Lin H, Cojal González JD, Severin N, Sokolov IM, Rabe JP. Reversible Switching of Charge-transfer at the Graphene-Mica Interface with Intercalating Molecules, ACS Nano, 2020; 14(9), 11594-11604. DOI: 10021/acsnano.0c04144.
[55] Tsuzuki S, Uchimaru T, Ono T. Origin of attraction in p-benzoquinone complexes with benzene and p-hydroquinone, Phys Chem Chem Phys, 2017; 19(34), 23260-23267. DOI: 10039/c7cp03712k.
[56] Alsanie WF, Alamri AS, Alyami H, Alhomrani M, Shakya S, Habeeballah H, Alkhatabi HA, Felimban RI, Alzahrani AS, Alhabeeb AA, Raafat BM, Refat MS, Gaber A. Increasing the Efficacy of Seproxetine as an Antidepressant Using Charge-Transfer Complexes, Molecules, 2022; 27(10):3290. doi: 10.3390/molecules27103290.
[57] Vahideh Hadigheh Rezvan, Samaneh Barani pour, Nasrin Jabbarvand Behrooz, Jaber Jahanbin Sardroodi, A computational perspective on the changes made in the structural, optical, and electronic properties of melamine and picric acid/quinol with the formation of charge transfer complexes, Structural Chemistry, 2025, https://doi.org/10007/s11224-025-02506-6
