تغذیه فرادقیق: گذر از تعاملات دو گانه رژیم غذا-میکروبیوم به سوی میکروبیومیکس شخصیسازیشده
الموضوعات :احمد غلامی 1 , علیرضا ابراهیمی نژاد 2
1 - مرکز تحقیقات بیوتکنولوژی، دانشگاه علوم پزشکی شیراز، شیراز، ایران.
2 - مرکز تحقیقات بیوتکنولوژی، دانشگاه علوم پزشکی شیراز، شیراز، ایران.
الکلمات المفتاحية: تغذیه فرادقیق, میکروبیومیکس, رژیم غذا, میکروبیوم, تعدیل میکروبیوم.,
ملخص المقالة :
میکروبیوم روده انسان بهعنوان یک اکوسیستم پویا و چند-گونهای نقش محوری در تنظیم و پایداری متابولیک، ایمنی و سلامت عمومی ایفا میکند. در این نوشتار، تأثیر رژیمهای غذایی مختلف از جمله رژیم مدیترانهای، پُرفیبر، گیاهخواری، پُرپروتئین، کتوژنیک و غربی بر ترکیب، عملکرد و تنوع میکروبیوتای روده بررسی شد. روش پژوهش شامل جستجوی مقالات در پایگاههای PubMed/MEDLINE، Google Scholar، Web of Science، EMBASE، ISC و SID تا ژوئن ۲۰۲۵ با کلیدواژههای مرتبط فارسی و انگلیسی بود. نتایج نشان داد که الگوهای غذایی غنی از فیبر و پلیفنول موجب افزایش تولید اسیدهای چرب کوتاهزنجیر (SCFA)، تعدیل پاسخهای ایمنی و بهبود نشانگرهای متابولیک میشوند، در حالی که رژیم غربی و پُرپروتئین با کاهش تنوع میکروبی و افزایش محصولات سمی مانند TMAO و سولفید هیدروژن مرتبط است. رژیم مدیترانهای و نسخه ارتقاءیافته آن، رژیم سبز، بیشترین تأثیر مثبت را بر افزایش گونههای ضدالتهابی (مانند Faecalibacterium prausnitzii) و تقویت مسیرهای تخمیری SCFA داشتند. همچنین پیشرفتهای تکنولوژیک در توالییابی متاژنومیک و مدلسازی متابولیک امکان شناخت عمیقتر سازوکارهای غذایی-میکروبیومی را فراهم کرده است. در پایان، چشمانداز توسعه «پروبیوتیکهای نسل آینده» با پتانسیل تشخیصی-درمانی همزمان و مداخلات تغذیهای فرادقیق برای مدیریت فردمحور تعاملات غذا-میکروبیوم تبیین شد. این نوشتار زیرساخت علمی لازم برای تدوین توصیههای غذایی عملی و طراحی مداخلات تغذیهای هدفمند را با درنظر گرفتن الگوی میکروبیومیکس به منظور پیشگیری و درمان بیماریها ارائه میدهد.
1. Walker AW, Hoyles L. Human microbiome myths and misconceptions. Nature Microbiology. 2023;8(8):1392-6.
2. Bourdeau-Julien I, Castonguay-Paradis S, Rochefort G, Perron J, Lamarche B, Flamand N, et al. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome. 2023;11(1):26.
3. Martinez-Gonzalez MA, Martin-Calvo N. Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables. Current Opinion in Clinical Nutrition & Metabolic Care. 2016;19(6):401-7.
4. J. JA, P. V, A. A-GG, M. HB, L. WT, R. S-CR, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell host & microbe. 2019;25(6):789-802.
5. W. K. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes, metabolic syndrome and obesity: targets and therapy. 2019;24:2221-36.
6. M. AA, C. DE, F. OSA, J. M, J. FC, M. PC, et al. Rethinking healthy eating in light of the gut microbiome. Cell Host & Microbe. 2022;30(6):764-85.
7. Abdallah RA, Beye M, Diop A, Bakour S, Raoult D, Fournier PE. The impact of culturomics on taxonomy in clinical microbiology. Antonie Van Leeuwenhoek. 2017;110(10):1327-37.
8. F. S, S. GT, W. OTP. The healthy microbiome—what is the definition of a healthy gut microbiome? Gastroenterology. 2021;160(2):483-94.
9. A. AN, M. HS, K. AR. The curious case of Prevotella copri. Gut Microbes. 2023;15(2):2249152.
10. E. P, L. S, P. M, A. R, V. O, T. TD, et al. Accessible, curated metagenomic data through ExperimentHub. Nature methods. 2017;14(11):1023-4.
11. F. DF, E. P, A. T, S. T, A. N, M. DA, et al. Distinct genetic and functional traits of human intestinal Prevotella copri strains are associated with different habitual diets. Cell host & microbe. 2019;25(3):444-53.
12. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560-4.
13. Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B, et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome medicine. 2016;8:1-11.
14. M. G-PA, P. R-L, J. S-S, J. V, D. C, M. F, et al. Gut microbiota in nonalcoholic fatty liver disease: a PREDIMED-Plus trial sub analysis. Gut Microbes. 2023;15(1):2223339.
15. Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69(7):1218-28.
16. D. WD, H. NL, Y. L, Y. Y, W. M, E. R, et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nature medicine. 2021;27(2):333-43.
17. Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nature medicine. 2021;27(2):333-43.
18. Rinott E, Meir AY, Tsaban G, Zelicha H, Kaplan A, Knights D, et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome medicine. 2022;14(1):29.
19. Waddell IS, Orfila C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Critical reviews in food science and nutrition. 2023;63(27):8752-67.
20. Chen L, Liu B, Ren L, Du H, Fei C, Qian C, et al. High-fiber diet ameliorates gut microbiota, serum metabolism and emotional mood in type 2 diabetes patients. Frontiers in Cellular and Infection Microbiology. 2023;Volume 13 - 2023.
21. Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes. 2021;13(1):1869502.
22. Benítez-Páez A, Kjølbæk L, Gómez del Pulgar EM, Brahe LK, Astrup A, Matysik S, et al. A multi-omics approach to unraveling the microbiome-mediated effects of arabinoxylan oligosaccharides in overweight humans. Msystems. 2019;4(4):10.1128/msystems. 00209-19.
23. Wang Y, Ames NP, Tun HM, Tosh SM, Jones PJ, Khafipour E. High Molecular Weight Barley β-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk. Frontiers in Microbiology. 2016;Volume 7 - 2016.
24. Deehan EC, Yang C, Perez-Muñoz ME, Nguyen NK, Cheng CC, Triador L, et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell host & microbe. 2020;27(3):389-404. e6.
25. Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR, Hillmann BM, et al. US immigration westernizes the human gut microbiome. Cell. 2018;175(4):962-72. e10.
26. Siddiqui MT, Cresci GA. The immunomodulatory functions of butyrate. Journal of inflammation research. 2021:6025-41.
27. Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology. 2017;52(1):1-8.
28. van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends in microbiology. 2021;29(8):700-12.
29. Roager HM, Vogt JK, Kristensen M, Hansen LBS, Ibrügger S, Mærkedahl RB, et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut. 2019;68(1):83-93.
30. Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut. 2023;72(1):180-91.
31. Losno EA, Sieferle K, Perez-Cueto FJA, Ritz C. Vegan diet and the gut microbiota composition in healthy adults. Nutrients. 2021;13(7):2402.
32. Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, et al. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. Phytomedicine. 2023;119:154979.
33. Ross F, Mayer D, Horn J, Cryan J, Del Rio D, Randolph E, et al. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? Nutritional Neuroscience. 2024;27(9):1058-76.
34. Corrêa TAF, Rogero MM, Hassimotto NMA, Lajolo FM. The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases. Frontiers in nutrition. 2019;6:188.
35. Selinger E, Neuenschwander M, Koller A, Gojda J, Kuehn T, Schwingshackl L, et al. Evidence of a vegan diet for health benefits and risks–an umbrella review of meta-analyses of observational and clinical studies. Critical Reviews in Food Science and Nutrition. 2023;63(29):9926-36.
36. Sesso HD, Manson JE, Aragaki AK, Rist PM, Johnson LG, Friedenberg G, et al. Effect of cocoa flavanol supplementation for the prevention of cardiovascular disease events: the COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. The American journal of clinical nutrition. 2022;115(6):1490-500.
37. Santos CA, Lima EMF, Franco BDGdM, Pinto UM. Exploring phenolic compounds as quorum sensing inhibitors in foodborne bacteria. Frontiers in microbiology. 2021;12:735931.
38. Plamada D, Vodnar DC. Polyphenols—Gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients. 2021;14(1):137.
39. Cortés‐Martín A, Selma MV, Tomás‐Barberán FA, González‐Sarrías A, Espín JC. Where to look into the puzzle of polyphenols and health? The postbiotics and gut microbiota associated with human metabotypes. Molecular Nutrition & Food Research. 2020;64(9):1900952.
40. Prochazkova M, Budinska E, Kuzma M, Pelantova H, Hradecky J, Heczkova M, et al. Vegan diet is associated with favorable effects on the metabolic performance of intestinal microbiota: a cross-sectional multi-omics study. Frontiers in nutrition. 2022;8:783302.
41. Davila A-M, Blachier F, Gotteland M, Andriamihaja M, Benetti P-H, Sanz Y, et al. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacological Research. 2013;68(1):95-107.
42. Ma N, Tian Y, Wu Y, Ma X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Current Protein and Peptide Science. 2017;18(8):795-808.
43. Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7(4):2930-46.
44. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clinical Journal of the American Society of Nephrology. 2009;4(10):1551-8.
45. Yue T, Li J, Zhu J, Zuo S, Wang X, Liu Y, et al. Hydrogen sulfide creates a favorable immune microenvironment for colon cancer. Cancer research. 2023;83(4):595-612.
46. Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell. 2020;181(6):1263-75. e16.
47. Zhu H, Bi D, Zhang Y, Kong C, Du J, Wu X, et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal transduction and targeted therapy. 2022;7(1):11.
48. Kong C, Yan X, Liu Y, Huang L, Zhu Y, He J, et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal transduction and targeted therapy. 2021;6(1):154.
49. Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, Chlipala G, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Scientific reports. 2018;8(1):6670.
50. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;173(7):1728-41. e13.
51. Goldberg EL, Shchukina I, Asher JL, Sidorov S, Artyomov MN, Dixit VD. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nature Metabolism. 2020;2(1):50-61.
52. Frioux C, Ansorge R, Özkurt E, Nedjad CG, Fritscher J, Quince C, et al. Enterosignatures define common bacterial guilds in the human gut microbiome. Cell Host & Microbe. 2023;31(7):1111-25. e6.
53. Sun S, Wang H, Tsilimigras MC, Howard AG, Sha W, Zhang J, et al. Does geographical variation confound the relationship between host factors and the human gut microbiota: a population-based study in China. Bmj Open. 2020;10(11):e038163.
54. Zhou X, Qiao K, Wu H, Zhang Y. The impact of food additives on the abundance and composition of gut microbiota. Molecules. 2023;28(2):631.
55. Del Pozo S, Gómez-Martínez S, Díaz LE, Nova E, Urrialde R, Marcos A. Potential effects of sucralose and saccharin on gut microbiota: a review. Nutrients. 2022;14(8):1682.
56. Wolfson SJ, Hitchings R, Peregrina K, Cohen Z, Khan S, Yilmaz T, et al. Bacterial hydrogen sulfide drives cryptic redox chemistry in gut microbial communities. Nature metabolism. 2022;4(10):1260-70.
57. Naimi S, Viennois E, Gewirtz AT, Chassaing B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome. 2021;9:1-19.
58. Dwiyanto J, Hussain M, Reidpath D, Ong K, Qasim A, Lee S, et al. Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country. Scientific Reports. 2021;11(1):2618.
59. Ecklu-Mensah G, Choo-Kang C, Maseng MG, Donato S, Bovet P, Viswanathan B, et al. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nature communications. 2023;14(1):5160.
60. Carter MM, Olm MR, Merrill BD, Dahan D, Tripathi S, Spencer SP, et al. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell. 2023;186(14):3111-24. e13.
61. Huang Y, Liu J, Tun HM, Stanton C, Chen T, El‐Nezami H, et al. Gut microbiota insights into human adaption to high‐plateau diet. Imeta. 2022;1(1):e6.
62. De Filippo C, Di Paola M, Ramazzotti M, Albanese D, Pieraccini G, Banci E, et al. Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy. Frontiers in microbiology. 2017;8:1979.
63. Hansen ME, Rubel MA, Bailey AG, Ranciaro A, Thompson SR, Campbell MC, et al. Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana. Genome Biology. 2019;20:1-21.
64. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nature communications. 2014;5(1):3654.
65. Dhakan D, Maji A, Sharma A, Saxena R, Pulikkan J, Grace T, et al. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. Gigascience. 2019;8(3):giz004.
66. Jha AR, Davenport ER, Gautam Y, Bhandari D, Tandukar S, Ng KM, et al. Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS biology. 2018;16(11):e2005396.
67. Keohane DM, Ghosh TS, Jeffery IB, Molloy MG, O’Toole PW, Shanahan F. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nature Medicine. 2020;26(7):1089-95.
68. Ordovas JM, Ferguson LR, Tai ES, Mathers JC. Personalised nutrition and health. Bmj. 2018;361:bmj.k2173.
69. Hughes RL, Kable ME, Marco M, Keim NL. The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Advances in Nutrition. 2019;10(6):979-98.
70. Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, et al. The interplay between diet and the gut microbiome: implications for health and disease. Nature Reviews Microbiology. 2024;22(11):671-86.
71. Samiraninezhad N, Kazemi H, Rezaee M, Gholami A. Effect of lactobacillus reuteri-derived probiotic nano-formulation on recurrent aphthous stomatitis: a double-blinded randomized clinical trial. BMC Oral Health. 2023;23(1):1019.
72. Gholami A, Dabbaghmanesh MH, Ghasemi Y, Koohpeyma F, Talezadeh P, Montazeri-Najafabady N. The ameliorative role of specific probiotic combinations on bone loss in the ovariectomized rat model. BMC Complementary Medicine and Therapies. 2022;22(1):241.
73. Gholami A, Mohkam M, Soleimanian S, Sadraeian M, Lauto A. Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. Microsystems & nanoengineering. 2024;10(1):113.
74. Martínez-González MA, Planes FJ, Ruiz-Canela M, Toledo E, Estruch R, Salas-Salvadó J, et al. Recent advances in precision nutrition and cardiometabolic diseases. Revista Española de Cardiología (English Edition). 2025;78(3):164-288.
75. Ioannidis JPA. The Challenge of Reforming Nutritional Epidemiologic Research. JAMA. 2018;320(10):969-70.
76. Chen L, Zhao N, Cao J, Liu X, Xu J, Ma Y, et al. Short-and long-read metagenomics expand individualized structural variations in gut microbiomes. Nature communications. 2022;13(1):3175.
77. Heinken A, Hertel J, Acharya G, Ravcheev DA, Nyga M, Okpala OE, et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nature Biotechnology. 2023;41(9):1320-31.
78. Asoudeh-Fard A, Beygi MY, Parsaei A, Mohkam M, Asoudeh-Fard M, Gholami A. Postbiotic metabolites derived from lactobacillus fermentum as potent antiproliferative bioresources on HeLa cells with promising biocompatibility. BMC complementary medicine and therapies. 2024;24(1):420.
79. Browne HP, Iqbal NT, Osman M, Tigoi C, Lawley TD, Gordon JI, et al. Boosting microbiome science worldwide could save millions of children’s lives. Nature. 2024;625(7994):237-40.
80. Yaqub MO, Jain A, Joseph CE, Edison LK. Microbiome-Driven Therapeutics: From Gut Health to Precision Medicine. Gastrointestinal Disorders. 2025;7(1):7.
81. Jayashree P, Kalpita M, Judith T, Ashwin K. Bio-Engineered Gut Microbiota for Drug Delivery: Novel Propitious Realm. Probiotics: CRC Press; 2024. p. 251-81.
82. Zhong H, Jiang J, Hussain M, Zhang H, Chen L, Guan R. The Encapsulation Strategies for Targeted Delivery of Probiotics in Preventing and Treating Colorectal Cancer: A Review. Advanced Science. 2025;12(18):2500304.