حسگر انتخابی بر پایه چارچوبهای آلی کووالانسی پلیآمید برای جذب و شناسایی گازهای سرطانزا در فاز آبی با کمک شبیهسازی مولکولی
الموضوعات : Applications of Nanostructures
افسانه قهاری
1
,
حیدر رئیسی
2
,
احمد حاجی زاده
3
1 - گروه شیمی، دانشکده علوم پایه، پردیس علوم، دانشگاه بیرجند، بیرجند، ایران.
2 - گروه شیمی، دانشکده علوم پایه، پردیس علوم، دانشگاه بیرجند، بیرجند، ایران.
3 - گروه شیمی، دانشکده علوم پایه، پردیس علوم، دانشگاه بیرجند، بیرجند، ایران.
الکلمات المفتاحية: آلایندههای گازی سمی, نیتروژن دیاکسید(NO₂), نیتروژن تریفلورید(NF₃), هیدرازین(N₂H₄), شبیهسازی دینامیک مولکولی(MD).,
ملخص المقالة :
انتشار آلایندههای گازی سمی مانند نیتروژن دیاکسید(NO₂)، نیتروژن تری فلورید(NF₃) و هیدرازین(N₂H₄) به محیط زیست، بهویژه منابع آبی، از چالشهای زیستمحیطی جدی و رو به گسترش بهشمار میرود. در این مطالعه، از چارچوبهای آلی کووالانسی(COFs) بهعنوان جاذبهای هوشمند با قابلیت تنظیم ساختاری و خواص لومینسانس ذاتی، برای شناسایی، جذب و حذف این سه آلاینده گازی از فاز آبی استفاده شده است. با طراحی هدفمند پیوندهای ایمنی و بهرهگیری از شبیهسازی دینامیک مولکولی(MD)، نحوهی برهمکنش گازهای مورد نظر با دیوارههای منافذ COFs مورد بررسی و تحلیل قرار گرفت. نتایج شبیهسازیها نشان داد که انرژیهای برهمکنش میان COFs و آلایندهها بهترتیب برای NF₃، N₂H₄ و NO₂ برابر با 479/51-، 57/10- و 10/79 کیلوژول بر مول است، که نشاندهندهی تعامل قویتر COFs با مولکول NF₃ میباشد. این یافتهها نقش کلیدی طراحی ساختار COFsها را در بهینهسازی عملکرد آنها برای جذب انتخابی و حسگری گازهای سمی تأیید میکند. در نهایت، این چارچوبها میتوانند بهعنوان گزینهای نویدبخش در توسعهی فناوریهای پاکسازی و پایش محیط زیست مطرح شوند.
References:
[1] F. B. Elehinafe, E. A. Aondoakaa, A. F. Akinyemi, O. Agboola, and O. B. Okedere, “Separation processes for the treatment of industrial flue gases--effective methods for global industrial air pollution control,” Heliyon, vol. 10, no. 11, 2024.
[2] G. O. Ofremu et al., “Exploring the relationship between climate change, air pollutants and human health: impacts, adaptation, and mitigation strategies,” Green Energy Resour., p. 100074, 2024.
[3] R. Mesburis et al., “Mitigation of indoor air pollution from air cleaners using a catalyst,” ACS ES\&T Air, 2025.
[4] Z. Han, K.-H. Yu, K.-Y. Wang, and H.-C. Zhou, “Binding Sites of Automobile Exhaust Gases on Metal--Organic Frameworks: Advances and Perspectives,” Energy \& Fuels, vol. 39, no. 13, pp. 6151–6163, 2025.
[5] Y. Wang et al., “Disparities in ambient nitrogen dioxide pollution in the United States,” Proc. Natl. Acad. Sci., vol. 120, no. 16, p. e2208450120, 2023.
[6] X. Li et al., “Trace Detection of Nitrogen Dioxide via Porous Tin Dioxide Nanopods with High Specific Surface Area and Enhanced Charge Transfer,” ACS sensors, 2025.
[7] J. Liu et al., “Ammonia transfers through interprovincial agricultural trade and their health burden implications in China,” Environ. Res. Lett., 2025.
[8] K. Hanif et al., “DFT-based evaluation of C3N2 nanosheet as sensor against industrial gaseous effluents: NH3, NCl3, NF3, COCl2, and SOCl2,” Struct. Chem., pp. 1–18, 2025.
[9] Y. Pan, L. Tang, L. Li, X. Wu, and L. Yan, “A versatile fluorescent probe for the ratiometric detection of hydrazine (N2H4) in water, soil, plant, and food samples,” Environ. Pollut., vol. 359, p. 124766, 2024.
[10] D. Yang et al., “Semi-Crystalline Ruthenium Catalyst for Zero-Drag Hydrogen Production from Hybrid Alkaline Seawater Electrolysis,” Adv. Sci., p. e07848, 2025.
[11] B. Yang, D. T. H. To, E. Resendiz Mendoza, and N. V Myung, “Achieving one part per billion hydrogen sulfide (H2S) level detection through optimizing composition and crystallinity of gold-decorated tungsten trioxide (Au-WO3) nanofibers,” ACS sensors, vol. 9, no. 1, pp. 292–304, 2024.
[12] S. Gong et al., “A Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detecting Hydrogen Sulfide in Environmental Waters, Wine Samples, and Living Systems,” J. Agric. Food Chem., vol. 73, no. 8, pp. 4594–4604, 2025.
[13] M. C. Padole and A. Raj, “NO2 Reduction by HCN, HNC, and CN during Cofiring of Spent Pot Lining in Cement Plant: A DFT and Reaction Kinetics Study,” Ind. \& Eng. Chem. Res., vol. 64, no. 16, pp. 8089–8108, 2025.
[14] C. Yildiz, M. Richter, J. Ströhle, and B. Epple, “Pollutant Formation under Nitrogen and Carbon Dioxide Atmosphere of Torrefied Poplar in an Entrained Flow Reactor,” Energy \& Fuels, vol. 38, no. 9, pp. 8157–8167, 2024.
[15] F. Xu et al., “Enhanced marine VOC emissions driven by terrestrial nutrient inputs and their impact on urban air quality in coastal regions,” Environ. Sci. \& Technol., vol. 59, no. 16, pp. 8140–8154, 2025.
[16] J. Fan, Z. Mo, J. Hang, J. Liang, and X. Wang, “Street Canyon Air Pollution and Pedestrian Health Risk Affected by Household Volatile Chemical Products (VCPs) Emission,” ACS ES\&T Air, 2025.
[17] S. Gooneh-Farahani and M. Anbia, “Strategies to Reduce NOx Emissions from Flue Gas: Trends and Prospects,” Water, Air, \& Soil Pollut., vol. 236, no. 11, pp. 1–48, 2025.
[18] S. Song, Y. J. Kim, S. H. Yoon, J. Hwang, and D. G. Park, “Experimental Investigation of Fundamental Flame Characteristics, N₂O and Nf₃ Decomposition, and Noₓ Formation in Hydrogen/Methane Diffusion Flames,” N₂O Nf₃ Decomposition, Noₓ Form. Hydrog. Diffus. Flames.
[19] T. Sari and D. Akgul, “Hydrazine (Bio) synthesis and separation: Advances, state-of-the-art methods, and patent review,” Biomass Convers. Biorefinery, pp. 1–22, 2025.
[20] K. M. Saidi et al., “Electrochemical and computational study of novel 5-fluoro-2-(methylamino) benzenesulfonamide as an organic catalyst for hydrazine electrooxidation,” Ionics (Kiel)., pp. 1–17, 2025.
[21] M. G. Kallitsakis, K. D. Nikopoulos, and I. N. Lykakis, “Hydrazine as a Reducing Agent in Catalytic Transfer Hydrogenation Processes: Up-to-Date Overview Approaches,” ChemCatChem, vol. 17, no. 8, p. e202401927, 2025.
[22] M. H. Alenazi et al., “Covalent organic frameworks (COFs) for CO2 utilizations,” Carbon Capture Sci. \& Technol., p. 100365, 2025.
[23] J. S. De Vos et al., “High-throughput screening of covalent organic frameworks for carbon capture using machine learning,” Chem. Mater., vol. 36, no. 9, pp. 4315–4330, 2024.
[24] X. Yang et al., “Synergistic linker and linkage of covalent organic frameworks for enhancing gold capture,” Small, vol. 20, no. 44, p. 2404192, 2024.
[25] H. Mabuchi, T. Irie, J. Sakai, S. Das, and Y. Negishi, “Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air,” Chem. Eur. J., vol. 30, no. 6, p. e202303474, 2024.
[26] K. Xu et al., “Polyphosphonate covalent organic frameworks,” Nat. Commun., vol. 15, no. 1, p. 7862, 2024.
[27] X. Liu et al., “Recent advances in covalent organic frameworks (COFs) as a smart sensing material,” Chem. Soc. Rev., vol. 48, no. 20, pp. 5266–5302, 2019.
[28] T. Skorjanc, D. Shetty, and M. Valant, “Covalent organic polymers and frameworks for fluorescence-based sensors,” ACS sensors, vol. 6, no. 4, pp. 1461–1481, 2021.
[29] Y. Wang, T. Wang, Q. Gu, and J. Shang, “Adsorption Removal of NO2 Under Low-Temperature and Low-Concentration Conditions: A Review of Adsorbents and Adsorption Mechanisms,” Adv. Mater., vol. 37, no. 5, p. 2401623, 2025.
[30] S.-M. Wang, H.-L. Lan, G.-W. Guan, and Q.-Y. Yang, “Amino-Functionalized Microporous MOFs for Capturing Greenhouse Gases CF4 and NF3 with Record Selectivity,” ACS Appl. Mater. Interfaces, vol. 14, no. 35, pp. 40072–40081, Sep. 2022, doi: 10.1021/acsami.2c12164.
[31] R. Van Der Jagt et al., “Synthesis and Structure − Property Relationships of Polyimide Covalent Organic Frameworks for Carbon Dioxide Capture and ( Aqueous ) Sodium-Ion Batteries,” 2021, doi: 10.1021/acs.chemmater.0c03218.
[32] T. Makarewicz and R. Kazmierkiewicz, “Molecular dynamics simulation by GROMACS using GUI plugin for PyMOL.” ACS Publications, 2013.
[33] J. Huang and A. D. MacKerell Jr, “CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data,” J. Comput. Chem., vol. 34, no. 25, pp. 2135–2145, 2013.
[34] A. S. Lemak and N. K. Balabaev, “On the Berendsen thermostat,” Mol. Simul., vol. 13, no. 3, pp. 177–187, 1994.
[35] H. Saito, H. Nagao, K. Nishikawa, and K. Kinugawa, “Molecular collective dynamics in solid para-hydrogen and ortho-deuterium: The Parrinello--Rahman-type path integral centroid molecular dynamics approach,” J. Chem. Phys., vol. 119, no. 2, pp. 953–963, 2003.
[36] Y. Ding et al., “Effect of different retarding agents on the hydration-crystallization process of $β$-hemihydrate gypsum,” Mater. Today Commun., p. 113106, 2025.
[37] A. Ghahari and H. Raissi, “Enhanced Antibiotic Pollutant Capture: Coupling Carbon Nanotubes with Covalent Organic Frameworks,” 2024, doi: 10.1021/acs.jpcc.4c04602.
[38] S. Akhzari, H. Raissi, and A. Ghahari, “Architectural design of 2D covalent organic frameworks (COFs) for pharmaceutical pollutant removal,” npj Clean Water, vol. 7, no. 1, p. 31, 2024, doi: 10.1038/s41545-024-00315-8.
[39] M. Ghasemi et al., “Removal of Pharmaceutical Pollutants from Wastewater Using 2D Covalent Organic Frameworks (COFs): An In Silico Engineering Study,” Ind. \& Eng. Chem. Res., vol. 61, no. 25, pp. 8809–8820, 2022.
[40] D. W. Mc Bride and V. G. J. Rodgers, “Obtaining protein solvent accessible surface area when structural data is unavailable using osmotic pressure,” AIChE J., vol. 58, no. 4, pp. 1012–1017, 2012.
