مروری برکاربرد الگوریتمهای بهینهسازی در پایش وضعیت ماشینآلات دوار
الموضوعات : Journal of New Applied and Computational Findings in Mechanical Systems
مهدی شکارزاده
1
,
بهنام گازرزاده
2
1 - گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران.
2 - گروه مهندسی مکانیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
الکلمات المفتاحية: ماشینآلات دوار, پایش وضعیت, الگوریتمهای بهینهسازی, تشخیص خرابی,
ملخص المقالة :
پایش وضعیت ماشینهای دوار به دلیل نقش مهم آن در افزایش قابلیت اطمینان، کاهش خرابیهای ناگهانی و صرفهجویی در هزینههای نگهداری، توجه بسیاری را به خود جلب کرده است. روشهای سنتی پایش وضعیت با چالشهایی مانند حجم بالای دادهها، وجود نویز و پیچیدگی در تشخیص خرابی روبهرو هستند. در سالهای اخیر، روشهای بهینهسازی به عنوان ابزاری کارآمد برای غلبه بر این مشکلات معرفی شدهاند و در زمینههایی چون پیشپردازش دادهها، انتخاب ویژگی و دستهبندی خرابیها به کار گرفته میشوند. در این مقاله، مروری جامع بر کاربرد الگوریتمهای بهینهسازی در پایش وضعیت ماشینهای دوار ارایه شده و نقش آنها در بهبود تحلیل ارتعاشات، پایش حرارتی و نگهداری پیشبینانه بررسی گردیده است. همچنین ادغام این الگوریتمها با هوش مصنوعی و یادگیری عمیق، چالشهای محاسباتی و نیاز به تصمیمگیری در زمان واقعی پرداخته میشود. سپس توصیههایی برای پژوهشهای آینده با تاکید بر استفاده از روشهای ترکیبی و پیشرفته ارایه میگردد.
[1] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J., (2018), Machinery health prognostics: A systematic review from data acquisition to RUL prediction, 104, 1, pp 799-834, doi: 10.1016/j.ymssp.2017.11.016A.
[2] Heng, S., Zhang, A., Tan, C. C., Mathew, J., (2009), Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical systems and signal processing, 23(3), pp 724-739, doi: 10.1016/j.ymssp.2008.06.009.
[3] Liang, P., Deng, C., Wu, J., Yang, Z., (2020), Intelligent fault diagnosis of rotating machinery via wavelet transforms, generative adversarial nets and convolutional neural network, Measurement, 159, p 107768.
[4] Van Tung, T., Yang, B.-S., (2009), Machine fault diagnosis and prognosis: the state of the art. International Journal of Fluid Machinery and Systems, 2(1), pp 61-71, doi: 10.5293/ijfms.2009.2.1.061.
[5] Jardine, A. K. S., Lin, D., Banjevic, D., (2006), A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mechanical systems and signal processing, 20(7), pp1483-1510, doi.org/10.1016/j.ymssp. 2005.09.012.
[6] Fischer, K., Coronado, D., (2015). Condition monitoring of wind turbines: State of the art, user experience and recommendations, VGB Power Tech, (07), pp 51-56.
[7] Liang, P., Deng, C., Wu, J., Li, G., Yang, Z., Wang, Y., (2019), Intelligent fault diagnosis via semi supervised generative adversarial nets and wavelet transform, IEEE Transactions on Instrumentation and Measurement, 69(7), pp 4659-4671, doi: 10.1109/ TIM. 2019. 2956613.
[8] Viale, L., Daga, A. P., Garibaldi, L., Caronia, S., Ronchi, I., (2022), Books trimmer industrial machine knives diagnosis: a condition-based maintenance strategy through vibration monitoring via novelty detection, In ASME International Mechanical Engineering Congress and Exposition, 86717, p V009T14A021.
[9] Lu, H., Thelen, A., Fink, O., Hu, C., Laflamme, S., (2024), Federated learning with uncertainty-based client clustering for fleet-wide fault diagnosis, Mechanical Systems and Signal Processing, 210, p 111068.
[10] Zhao, Z., Jiao, Y., Xu, Y., Chen, Z., Zhao, R., (2024), Smeta-LU: A self-supervised meta-learning fault diagnosis method for rotating machinery based on label updating, Advanced Engineering Informatics, 62, p 102875.
[11] Fu, W., Yang, K., Wen, B., Shan, Li, Y. S., Zheng, B., (2024), Rotating Machinery Fault Diagnosis with Limited Multisensor Fusion Samples by Fused Attention-Guided Wasserstein GAN, Symmetry, 16(3), p 285.
[12] Gao, Y., Ahmad, Z., Kim, J. M., (2024), Fault diagnosis of rotating machinery using an optimal blind deconvolution method and hybrid invertible neural network, Sensors, 24(1), p 256.
[13] Dong, Y., Xu, M., Li, Y., Wang, R., (2024), General feature spatial location and distance-based unknown Detection: A universal domain adaptation fault diagnosis framework of rotating Machinery, Mechanical Systems and Signal Processing, 208, p 110979.
[14] Surucu, O., Gadsden, S. A., Yawney, J., (2023), Condition monitoring using machine learning: a review of theory, applications, and recent advances, Expert Systems with Applications, 221. doi: 10.1016/j.eswa.2023.119738.
[15] AlShorman, O., Irfan, M., Abdelrahman, R.B, Masadeh M., Alshorman, A., Sheikh, M. A., Saad, N., Rahman, S., (2024), Advancements in condition monitoring and fault diagnosis of rotating machinery: A comprehensive review of image-based intelligent techniques for induction motors. Engineering Applications of Artificial Intelligence, 130, p 107724.
[16] Zou, L., Zhuang, K. J., Zhou, A., Hu, J., (2023), Bayesian optimization and channel-fusion-based convolutional autoencoder network for fault diagnosis of rotating machinery. Engineering Structures, 280, p 115708.
[17] Jardine, A. K. S., Lin, D., Banjevic, D., (2006), A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), pp 1483-1510, doi: 10.1016/j. ymssp.2005.09.012.
[18] Ali, M. I., Lai, N. S., Abdulla, R., (2024), Predictive maintenance of rotational machinery using deep learning. International Journal of Electrical and Computer Engineering (IJECE), 14(1), pp 1112-1121.
[19] Tsoutsanis, E., Meskin, N., Benammar, M., Khorasani, K., (2014), A component map tuning method for performance prediction and diagnostics of gas turbine compressors, Applied Energy, 135, pp.572-585. doi: 10.1016/j.apenergy.2014.08.115.
[20] de Castro-Cros, M., Velasco, M., Angulo, C., (2021), Machine-learning-based condition assessment of gas turbines—a review. Energies, 14 [online]. doi: 10.3390/en 14248468.
[21] Krishnababu, S., Valero, O., Wells, R., (2021), AI assisted high fidelity multi-physics digital twin of industrial gas turbines, in Proceedings of the ASME Turbo Expo. doi: 10.1115/GT2021-58925.
[22] Xiong, H., Peng, Y., Hu, Y., Zhang, L., Li, Y., (2022). Vibration fault signal analysis and diagnosis of flue gas turbine, Engineering Failure Analysis, 134, p 105981.
[23] Tahan, M., Tsoutsanis, E., Muhammad, M., Abdul Karim, Z. A., (2017), Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review, Applied energy, 198, pp 122-144, doi: 10.1016/ j. apenergy.2017.04.048.
[24] Yang, W., Tavner, P. J., Crabtree, C. J., Feng, Y., Qiu, Y., (2014), Wind turbine condition monitoring: Technical and commercial challenges, Wind energy, 17(5), pp 673-693, doi: 10.1002/we.1508.
[25] Zhou, Z. D., Chen, Y. P., Fuh, J. Y. H., Nee, A. Y. C., (2000), Integrated condition monitoring and fault diagnosis for modern manufacturing systems, CIRP Annals, 49(1), pp 387-390, doi: 10.1016/S0007-8506(07)62971-0.
[26] Hassani, S., Dackermann, U., (2023), A systematic review of optimization algorithms for structural health monitoring and optimal sensor placement Sensors, 23(6), p 3293.
[27] Tan, Y., Zhang, L., (2020), Computational methodologies for optimal sensor placement in structural health monitoring: A review, Structural Health Monitoring, 19(4), pp 1287-1308, doi: 10.1177/1475921719877579.
[28] Sun, H., Büyüköztürk, O., (2015), Optimal sensor placement in structural health monitoring using discrete optimization, Smart Materials and Structures, 24(12), p125034.
[29] Van, M., Hoang, D. T., Kang, H. J., (2020), Bearing fault diagnosis using a particle swarm optimization-least squares wavelet support vector machine classifier, Sensors, 20(12), p 3422.
[30] Chen, Z., Deng, S., Chen, X., Li, C., Sanchez, R. V., Qin, H., (2017). Deep neural networks-based rolling bearing fault diagnosis, Microelectronics Reliability, 75, pp 327-333, doi: 10.1016/j.microrel.2017.03.006.
[31] Wu, J., Li, M., Gao, C., Liu, Z., Zhang, B., Zhang, X., (2023). Research on deployment scheme and routing optimization algorithm of distribution cable condition monitoring devices, Energies, 16(19), p 6930.
[32] Van, M., Hoang, D. T., Kang, H. J., (2020). Bearing fault diagnosis using a particle swarm optimization-least squares wavelet support vector machine classifier, Sensors, 20(12), p 3422.
[33] Kadri, O., Mouss, L.H., (2017), Identification and detection of the process fault in a cement rotary kiln by extreme learning machine and ant colony optimization, Academic Journal of Manufacturing Engineering, 15(2), pp 43-50.
[34] Hassani, S., Dackermann, U., (2023), A systematic review of optimization algorithms for structural health monitoring and optimal sensor placement, Sensors, 23(6), p 3293.
[35] Kocak, G., Gokcek, V., Genc, Y., (2023), Condition monitoring and fault diagnosis of a marine diesel engine with machine learning techniques, Pomorstvo, 37(1), pp 32-46, doi: 10. 31217/p.37.1.4.
[36] Brusa, E., Cibrario, L., Delprete, C., Di Maggio, L.G., (2023), Explainable AI for machine fault diagnosis: understanding features’ contribution in machine learning models for industrial condition monitoring, Applied Sciences, 13(4), p 2038.
[37] Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi, W., Simonetto, L., (2018), Genetic algorithms for hyperparameter optimization in predictive business process monitoring, Information Systems, 74, pp 67-83.
[38] Zhang, W., Zhao, B., Zhou, L., Wang, J., Niu, K., Wang, F., Wang, R., (2022), Research on comprehensive operation and maintenance based on the fault diagnosis system of combine harvester, Agriculture, 12(6), p 893.
[39] Azadeh, A., Saberi, M., Kazem, A., Ebrahimipour, V., Nourmohammadzadeh, A., Saberi, Z., (2013), A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on ANN and support vector machine with hyper-parameters optimization, Applied Soft Computing, 13(3), pp 1478-1485, doi: 10.1016/j.asoc. 2012.06.020.
[40] Liang, J., Liao, Y., Chen, Z., Lin, H., Jin, G., Gryllias, K., Li, W., (2022), Intelligent fault diagnosis of rotating machinery using lightweight network with modified tree‐structured parzen estimators, IET Collaborative Intelligent Manufacturing, 4(3), pp 94-207, doi: 10.1049/cim2.12055.
[41] Song, B., Liu, Y., Fang, J., Liu, W., Zhong, M., Liu, X., (2024), An optimized CNN-BiLSTM network for bearing fault diagnosis under multiple working conditions with limited training samples, Neurocomputing, 574, p 127284.
[42] Parziale, M., Lomazzi, L., Giglio, M., Cadini, F., (2023), Physics-informed neural networks for the condition monitoring of rotating shafts, Sensors, 24(1), p 207.
[43] Dereci, U., Tuzkaya, G., (2024), An explainable artificial intelligence model for predictive maintenance and spare parts optimization, Supply Chain Analytics, 8, p 100078.
[44] Brusa, E., Cibrario, L., Delprete, C., Di Maggio, L.G., (2023), Explainable AI for machine fault diagnosis: understanding features’ contribution in machine learning models for industrial condition monitoring, Applied Sciences, 13(4), p 2038.
