هدایت الکتریکی فروسیالات MnFe2O4 با دو پایه آب و اتیلن گلیکول
الموضوعات : نانومواد
1 - Department of Physics, Golestan University
الکلمات المفتاحية: فروسیالات, نانوسیالات مغناطیسی, فریت منگنز, سیال پایه آب, اتیلن گلیکول, هدایت الکتریکی,
ملخص المقالة :
در این پژوهش، هدایت الکتریکی فروسیالات حاوی نانوذرات مغناطیسی MnFe2O4 در دو سیال پایه آب و اتیلن گلیکول مورد بررسی قرار گرفت. نانوذرات به روش همرسوبی شیمیایی سنتز و ویژگیهای ساختاری و فیزیکی آنها با تکنیکهای گوناگون ارزیابی شدند. نتایج شناسایی ساختاری به کمک XRD نشان داد نانوذرات بدون هرگونه فاز ناخالصی و با کیفیت بلوری مطلوب در ساختار اسپینلی و با ابعاد نانومتری ساخته شدهاند. تصاویر میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) نشاندهنده توزیع یکنواخت نانوذرات با اندازه میانگین حدود nm 7/23 بود. طیفسنجی فروسرخ تبدیل فوریه (FTIR) تشکیل پیوندهای Mn-O و Fe-O را تایید کرد. بررسی خواص مغناطیسی نانوذرات به کمک VSM، رفتار شبه سوپرپارامغناطیسی نانوذرات را با مغناطش مانده و میدان واگردان ناچیز و مغناطش اشباعی emu/g9/46 نتیجه داد. اندازهگیری هدایت الکتریکی فروسیالات در گسترۀ دمایی 20 تا oC 70 و برای کسر حجمیهای 0 تا 1% اندازهگیری شد. نتایج نشان داد افزایش دما و کسر حجمی بطور قابلتوجهی هدایت الکتریکی را بهویژه در فروسیال حاوی اتیلن گلیکول افزایش میدهند و در هر دو سیال پایه اثر کسر حجمی، بیشتر از دما است. طبق این نتایج در دمای oC 70 و با افزایش کسر حجمی 0 تا 1%، هدایت الکتریکی فروسیال MnFe2O4-آب به میزان 50 برابر و هدایت الکتریکی فروسیال MnFe2O4-اتیلن گلیکول به میزان 170 برابر افزایش یافت. همچنین، در کسر حجمی 1%، به ازای افزایش دما از 20 به oC 70، هدایت الکتریکی فروسیال MnFe2O4-آب به میزان 8/1 برابر و فروسیال MnFe2O4-اتیلن گلیکول به میزان 5/4 برابر افزایش نشان داد. مقایسه نتایج با مدل شن و همکارانش، سازگاری قابل توجهی را بهویژه در دماها و کسر حجمیهای کمتر نشان داد و این مدل توانست بهخوبی رفتار هدایت الکتریکی فروسیالات مورد تحقیق را پیشبینی کند. یافتههای پژوهش حاضر نشاندهنده قابلیت بالای این نانوسیالات در کاربردهایی مانند بیوالکترودها و دارورسانی هدفمند مغناطیسی است.
[1] A.A. Minea, E.I. Chereches, "Nanofluids for electrical applications", Elsevier, 2024.
[2] M.M. Selim, S. El-Safty, A. Tounsi, M. Shenashen, Alexandria Engineering Journal, 76, 2023, 75.
[3] K. Sharma, N. Aggarwal, N. Kumar, A. Sharma, Materials Today: Proceedings, 1, 2023, 125.
[4] R.E. El-Shater, H. El Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, Journal of Alloys and Compounds, 928, 2022, 166954.
[5] A. Ibiyemi, O. Akinrinola, G. Yusuf, S. Olaniyan, J. Lawal, M. Orojo, B. Osuporu, Journal of the Nigerian Society of Physical Sciences, 2, 2024, 1897.
[6] G.K. Poongavanam, S. Duraisamy, V. Vigneswaran, V. Ramalingam, Materials Today: Proceedings, 39, 2021, 1532.
[7] A.A. Minea, Nanomaterials, 9, 2019, 1592.
[8] M. Dolati, H. Khandan Fadafan, M. Abareshi, Nano-Structures & Nano-Objects, 39, 2024, 101266.
[9] A.A. Alrashed, A. Karimipour, S.A. Bagherzadeh, M.R. Safaei, M. Afrand, International Journal of Heat and Mass Transfer, 127, 2018, 925.
[10] P.B. Kharat, M. Shisode, S. Birajdar, D. Bhoyar, K. Jadhav. "Synthesis and characterization of water based NiFe2O4 ferrofluid". AIP Conference Proceedings, 2017.
[11] K. Anu, J. Hemalatha, Journal of Molecular Liquids, 284, 2019, 445.
[12] S. Bagheli, H.K. Fadafan, R.L. Orimi, M. Ghaemi, Powder Technology, 274, 2015, 426.
[13] L. Shen, H. Wang, M. Dong, Z. Ma, H. Wang, Physics Letters A, 376, 2012, 1053.
[14] J.C. Maxwell, "A treatise on electricity and magnetism", Clarendon press, 1873.
[15] S. Gulati, S. Gokhale, V. Luthra, International Journal of Materials Research, 115, 2024, 266.
[16] A. Silambarasu, A. Manikandan, K. Balakrishnan, S.K. Jaganathan, E. Manikandan, J.S. Aanand, Journal of nanoscience and nanotechnology, 18, 2018, 3523.
[17] S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, Scripta materialia, 56, 2007, 797.
[18] A. Mary Jacintha, A. Manikandan, K. Chinnaraj, P. Neeraja, Journal of nanoscience and nanotechnology, 15, 2015, 9732.
[19] W.E. Pottker, R. Ono, M.A. Cobos, A. Hernando, J.F. Araujo, A.C. Bruno, S.A. Lourenço, E. Longo, F.A. La Porta, Ceramics International, 44, 2018, 17290.
[20] F. boluki, H. Khandan Fadafan, R. Lotfi Orimi, Iranian Journal of Crystallography and Mineralogy, 2, 2015, 285.
[21] G. Ramalingam, R. Vignesh, C. Ragupathi, C.M. Magdalane, K. Kaviyarasu, J. Kennedy, Surfaces and Interfaces, 19, 2020, 100475.
[22] M.M. Heyhat, A. Irannezhad, Journal of Molecular Liquids, 268, 2018, 169.
[23] I. Zakaria, W. Mohamed, W. Azmi, A. Mamat, R. Mamat, W. Daud, International Journal of Heat and Mass Transfer, 119, 2018, 460.
[24] K.K. Sarojini, S.V. Manoj, P.K. Singh, T. Pradeep, S.K. Das, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 417, 2013, 39.
[25] Y. Guo, T. Zhang, D. Zhang, Q. Wang, International Journal of Heat and Mass Transfer, 117, 2018, 280.
[26] S. Sikdar, S. Basu, S. Ganguly, International Journal of Nanoparticles, 4, 2011, 336.
[27] S. Ganguly, S. Sikdar, S. Basu, Powder Technology, 196, 2009, 326.
[28] T. Iglesias, M. Rivas, R. Iglesias, J.C.R. Reis, F. Cohelho, The Journal of Chemical Thermodynamics, 66, 2013, 123.
[29] P. Jamilpanah, H. Pahlavanzadeh, A. Kheradmand, Heat and Mass Transfer, 53, 2017, 1343.
[30] M. Zawrah, R. Khattab, L. Girgis, H. El Daidamony, R.E.A. Aziz, HBRC Journal, 12, 2016, 227.