حساسیت شته Myzus persicae به دو جدایه قارچ بیمارگر Beauveria bassiana از بصره
الموضوعات :
رحمن عزیز عبدالحمزه المخاضری
1
,
شیما رحمانی
2
,
سیده معصومه هاشمی نیا
3
1 - دانشآموخته کارشناسیارشد، گروه گیاهپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه گیاهپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشیار، گروه گیاهپزشکی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
الکلمات المفتاحية: زیست¬سنجی, شته, قارچ پاتوژن, کنترل بیولوژیک. ,
ملخص المقالة :
شته Myzus persicae حشرهای پلیفاژ است که میتواند خسارتهای زیادی روی محصولات مختلف باغی و زراعی ایجاد کند. به دلیل مقاومت M. persicae به بسیاری آفتکشها، استفاده از ترکیبات جایگزین توصیه میشود. قارچ Beauveria bassiana به عنوان یک بیمارگر مؤثر در کنترل شتهها شناخته شده است و به دلیل عدم سمیت برای پستانداران و قابلیت کنترل طولانیمدت آفات، مورد توجه قرار دارد. در این تحقیق، کشندگی دو جدایه بومی شهر بصره عراق علیه شته M. persicae بررسی شد. آزمایشهای زیستسنجی در شرایط ثابت (دمای ۱±۲۵ درجه سلسیوس، رطوبت نسبی ۷۰ درصد و دورهنوری ۱٦ ساعت روشنایی) و طی مدت زمان ده روز انجام گرفت. بر اساس نتایج، با افزایش غلظت، درصد کشندگی شتهها افزایش مییافت.LC50 جدایه Bb 25 برابر 105×28/4 کنیدی/میلیلیتر و جدایه Bb 195 برابر 105×75/3 کنیدی/میلیلیتر محاسبه شد که نشان میداد جدایه Bb 195 نسبت به Bb 25 مرگآفرینی بیشتری دارد.LT50 مربوط به جدایه Bb 195 در تمامی غلظتها کمتر از Bb 25 بود و با افزایش غلظت میزانLT50 نیز کاهش یافت. کمترین LT50 (89/5 روز) در تیمارBb 195 (غلظت 108 کنیدی/میلیلیتر) و بیشترین مقدار آن (54/12 روز) در تیمارBb 25 (غلظت 103 کنیدی/میلیلیتر) مشاهده شد. این پژوهش نشان داد هر دو جدایه قارچ پاتوژن B. bassiana بومی شهر بصره اثر کشنده مناسبی روی M. persicae داشتند. اگرچه، جدایه Bb 195 به دلیل اثر حشرهکشی بیشتر در مدت زمانی کمتر، قابلیت بهتری برای استفاده به عنوان عامل کنترل زیستی را دارا بود.
Ali, J., Bayram, A., Mukarram, M., Zhou, F., Karim, M.F., Hafez, M.M.A., Mahamood, M., Yusuf, A.A., King, P.J.H., Adil, M.F., Ma, Z. and I. H., Shamsi. 2023. Peach–potato aphid myzus persicae: current management strategies, challenges, and proposed solutions. Sustainability, 15: 11150. https://doi.org/10.3390/su151411150
Ali, J. 2023. The Peach Potato Aphid (Myzus persicae): Ecology and Management; CRC Press: Boca Raton, FL, USA. Amnuaykanjanasin, A., Jirakkakul, J., Panyasiri, C., Panyarakkit, P., Nounurai, P., Chantasingh, D., Eurwilaichitr, L., Cheevadhanarak, S., and M., Tanticharoen. 2012. Infection and colonization of tissues of the aphid Myzus persicae and cassava mealybug Phenacoccus manihoti by the fungus Beauveria bassiana. BioControl, 58(3): 319-330.
Askary, H., Benhamou, N. and J., Brodur. 1999. Ultrastructural and characterization of aphid invasion by the hyphomycete Verticillium lecanii. Journal of Invertebrate Pathology, 74: 1-13.
Bamisile, B.S., Akutse, K.S., Siddiqui, J.A. and Y., Xu. 2021. Model application of entomopathogenic fungi as alternatives to chemical pesticides: Prospects, challenges, and insights for next-generation sustainable agriculture. Frontiers in Plant Science, 12: 741804.
Barzman, M., Bàrberi, P., Birch, A.N.E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B.; Hommel, B., Jensen, J.E., Kiss, J. and P., Kudsk. 2015. Eight principles of integrated pest management. Agronomy for Sustainable Development, 35: 1199-1215.
Batta, Y.A. (2003). Production and testing of novel formulations of the entomopathogenic fungus Metarhizium anisopliae (Metschinkoff) Sorokin (Deuteromycotina: Hyphomycetes). Crop Protection, 22(2): 415-422.
Berber G. and A. K. Birgücü, 2022. Effects of two different isolates of entomopathogen fungus, Beauveria bassiana (Balsamo) Vuillemin on Myzus persicae Sulzer (Hemiptera: Aphididae). Journal of Agricultural Sciences, 28 (1): 121-132.
Biryol S., Demirba Z., Erdogan P. and I. Demir, 2022. Development of Beauveria bassiana (Ascomycota: Hypocreales) as a mycoinsecticide to control green peach aphid, Myzus persicae (Homoptera: Aphididae) and investigation of its biocontrol potential. Journal of Asia-Pacific Entomology, 25: 101878.
Dedryver, C.A., Le Ralec, A. and F., Fabre. 2010. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus Biologies, 333: 539-553.
de Faria, M. R. and S. P., Wraight. 2007. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological control, 43: 237e256.
Deguine, J.-P., Aubertot, J.-N., Flor, R.J., Lescourret, F., Wyckhuys, K.A.G. and A., Ratnadass. 2021. Integrated pest management: Good intentions, hard realities. A review. Agronomy for Sustainable Development, 41: 38.
Efficacy of Iranian Isolate of Beauveria bassiana against Russian wheat aphid Diuraphis noxia (Mordvilko) (Homoptera: Aphididae) on the Laboratory conditions. Journal of Agriculture, 11(1): 116-128.
Feng, M.G. and J.B., Johnson.1990. Relative virulence of six isolates of Beauveria bassiana on Diuraphis noxia (Homop: Aphididae). Environmental Entomology, 19: 785-790.
Fernandes, É.K.K., Rangel, D.E.N., Braga, G.U.L. and W.R., Donald. 2015. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current Genetics, 61: 427-440. https://doi.org/10.1007/s00294-015-0492-z
Firake, D.M. and G.T., Behere. 2020. Natural mortality of invasive fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in maize agroecosystems of northeast India. Biological Control, 148: 104303. https://doi.org/10.1016/j.biocontrol.2020.104303
Ghamari Zare, Z., Askary, H., Abbasipour H., Sheikhi Gorjan, A. and A., Saeidi Zadeh. 2014. Virulence of four Beauveria bassiana isolates on aestivating and overwintering populations of Eurygaster integriceps. Biocontrol in Plant Protection, 2(1): 31-41.
Güven, Ö., Baydar, R., Temel, C. and İ., Karaca. 2014. The effects of some entomopathogenic fungi against Aphis fabae (Scopoli) (Hemiptera: Aphididae). Turkish Journal of Biological Control 5(2): 149-158.
Hewer, A., Becker, A. and van A.J.E., Bel, 2011. An aphid’s Odyssey–the cortical quest for the vascular bundle. Journal of Experimental Biology, 214: 3868–3879.
Idrees, A., Afzal, A., Qadir, Z.A. and J., Li. 2022. Bioassays of Beauveria bassiana Isolates against the Fall Armyworm, Spodoptera frugiperda. Journal of Fungi. 8(7): 717. https://doi.org/10.3390/jof8070717
Khan, S., Guo, L., Shi, H. X., Mijit, M. and D., Qiu. 2012. Bioassay and enzymatic comparison of six entomopathogenic fungal isolates for virulence or toxicity against green peach aphids Myzus persicae. African Journal of Biotechnology 11(77),14193-14203.
Kim, J. J. and K. C., Kim. 2008. Selection of a highly virulent isolate of Lecanicillium attenuatum against cotton aphid. Journal of Asia-Pacific Entomology, 11: 1-4.
Maistrou, S., Natsopoulou, M.E., Jensen, A.B. and N.V., Meyling. 2020. Virulence traits within a community of the fungal entomopathogen Beauveria: Associations with abundance and distribution. Fungal Ecology, 48: 100992. https://doi.org/10.1016/j.funeco.2020.100992
Miliner, R.J. and G.G., Lutton. 1986. Dependence of Verticillium lecanii on high humidity for infection and sporulation using Myzus persicae as host. Environmental Entomology, 15: 380-382.
Mingeot, D., Hautier, L., and J.P., Jansen. 2021. Structuration of multilocus genotypes associated with insecticide resistance of the peach potato aphid, Myzus persicae (Sulzer), in potato fields in southern Belgium. Pest Management Science, 77(1): 482-491. https://doi.org/10.1002/ps.6045
Mohammadipour, A., Bagdadi, A., Ghazavi, M., Mirkarimmi, A. and N., Nikpour. 2009. Efficacy of Iranian Isolate of Beauveria bassiana against Russian wheat aphid Diuraphis noxia (Mordvilko) (Homoptera:Aphididae) on the Laboratory conditions. Journal of Agriculture,11(1):115-127.
Seyed Talebi F. S., Safavi S. A., Talaei-Hassanloui R. and A. R., Bandani. 2018. Study of the virulence and conidial germination types for some Beauveria bassiana isolates. Biological Control of Pests and plant diseases, 7(1): 65-73. (In Persian)
Mota-Sanchez, D. and J.C., Wise. 2025. The Arthropod Pesticide Resistance Database; Michigan State University: East Lansing, MI, USA.
Mottet, C., Caddoux, L., Fontaine, S., Plantamp, C., Bass, C., and B., Barrès. 2024. Myzus persicae resistance to neonicotinoids-unravelling the contribution of different mechanisms to phenotype. Pest Management Science, 80(11): 5852-5863. https://doi.org/10.1002/ps.8316
Muniz, M. and Nombela, G. 2001. A new clip-cage for biological studies. Published by EWSN: John Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH U.K.
Nakahara, Y., Shimura, S., Ueno, C., Kanamori, Y., Mita, K., Kiuchi, M. and M., Kamimura. 2009. Purification and characterization of silkworm hemocytes by flow cytometry. Developmental and Comparative Immunology, 33: 439-448. https://doi.org/10.1016/j.dci.2008.09.00
Paschapur, A., Subbanna, A., Singh, A.K., Jeevan, B., Stanley, J., Rajashekhar, H. and K.K., Mishra. 2021. Unraveling the importance of metabolites from entomopathogenic fungi in insect pest management. In: Microbes for Sustainable Insect Pest Management, Springer: Berlin/Heidelberg, Germany, pp. 89–120.
Quesada-Moraga, E., Maranhao, E. A. A., Valverde-Garcia, P. and C. Santiago-Alvarea, 2006. Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirement, and toxicogenetic activity. Biological Control, 36: 274-287.
Quesada-Moraga, E., Navas-Corte´s, J. A., Maranhao, E. A. A., Ortiz-Urquiza, A., and C., Santiago-Alvarez. 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, 111: 947e966.
Quiroga-Cubides, G M., Gómez Alvárez, M I. and L. M., Garriga. 2025. Framework for mass production of entomopathogenic fungi in bioeconomy context. R. S. Singh and Bhari R. (Eds) In: Developments in Applied Microbiology and Biotechnology, Fungal Biotechnology, Academic Press, Pages 549-575. https://doi.org/10.1016/B978-0-443-13263-6.00021-3
Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A., Srivastav A., and J., Kaushal. 2021. An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 283(10): 124657 https://doi.org/10.1016/j.jclepro.2020.124657
Serrão, J.E., Plata-Rueda, A., Martínez, L.C. and J.C., Zanuncio. 2022. Side-effects of pesticides on non-target insects in agriculture: a mini-review. Sci Nat, 109: 17. https://doi.org/10.1007/s00114-022-01788-8
Soltani, T., Yarahmadi, F., Rajabpour, A. and M. H., Ghoddom Parizi Pour. 2022. Pathogenicity of Iranian isolates of Akanthomyces lecanii and A. muscarius on the black bean aphid (Aphis fabae Scopoli). Plant Protection (Scientific Journal of Agriculture), 45 (1): 19-28. (In Farsi) https://doi.org/10.22055/ppr.2021.17246 (In Persian)
Sparks, T.C. and R., Nauen. 2015. IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121: 122–128.
St. Leger, R. J., Wang, C. and W. Fang, 2011. New perspectives on insect pathogens. Fungal Biology Reviews, 25: 84e88.
Sevim, A., Sevim, E. and Z., Demirbağ. 2015. General biology of entomopathogenic fungi and their potential to control pest species in Turkey. Erzincan University Journal of Science and Technology 8(1): 115-147.
Ramos, Y., Portal, O., Meyling, N.V. and I., Klingen. 2024. Biological control potential of two Beauveria bassiana isolates against the stink bugs Nezara viridula L. and Piezodorus guildinii Westwood (Hemiptera: Pentatomidae) in common bean. Egyptian Journal of Biological Pest Control, 34: 23. https://doi.org/10.1186/s41938-024-00787-3
Talaei-Hassanloui, R., Kharazi-Pakdel, A., Goettel, M.S., Little, S. and J., Mozaffari. 2007. Germination polarity of Beauveria bassiana conidia and its possible correlation with virulence. Journal of Invertebrate Pathology, 94: 102-107. (In Persian)
Theiling, K.M., and B.A., Croft. 1988. Pesticide side-effects on arthropod natural enemies: A database summary. Agriculture, Ecosystems and Environmen, 21: 191–218.
Van Emden, H.F., Eastop, V.F., Hughes, R.D. and M.J., Way. 1969. The ecology of Myzus persicae. Annual Review of Entomology, 14: 197–270.
Vorburger, C., Lancaster, M. and P. Sunnucks, 2003. Environmentally related patterns of reproductive modes in the aphid Myzus persicae and the predominance of two ‘superclones’ in Victoria, Australia. Molecular Ecology, 12: 3493–3504.
Yun H.G., Kim D.J., Gwak W.S., Shin T.Y. and S.D., Woo. 2017. Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology, 45(3):192-198. https://doi.org/10.5941/MYCO.2017.45.3.192
Zimmermann, G. 2007. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, 17: 553-596.