فنیلگلایسین تثبیتشده بر روی UiO-66-NH2: لیگاندی ناهمگن برای اکسایش آلیلی سیکلوالفینها
الموضوعات :سعدی صمدی 1 , سمیه عبدی 2 , حمید آروین نژاد 3
1 - آزمایشگاه سنتز نامتقارن، گروه شیمی، دانشکده علوم پایه، دانشگاه کردستان، سنندج، کردستان، ایران
2 - آزمایشگاه سنتز نامتقارن، گروه شیمی، دانشکده علوم پایه، دانشگاه کردستان، سنندج، کردستان، ایران
3 - آزمایشگاه سنتز نامتقارن، گروه شیمی، دانشکده علوم پایه، دانشگاه کردستان، سنندج، کردستان، ایران
الکلمات المفتاحية: کاتالیزگر ناهمگن, اکسایش آلیلی, ترشیو-بوتیل هیدروپراکسید, استر آلیلی.,
ملخص المقالة :
در این پژوهش، چارچوب آلی-فلزی UiO-66-NH2 سنتز و با کلرواستیل کلرید عاملدار شد. سپس اسید آمینه فنیلگلایسین بر روی آن تثبیت و لیگاند ناهمگن UiO@PhG سنتز گردید. ساختار لیگاند ناهمگن با استفاده از روشهایی نظیر FT-IR،XRD ،TGA/DTA و SEM شناسایی شدند. ارزیابی کارایی کمپلکس مس-لیگاند بهعنوان کاتالیزگری ناهمگن در واکنش اکسایش آلیلی اولفینهای حلقوی با استفاده از ترشیو-بوتیل هیدروپراکسید و پارا-نیتروبنزوئیک اسید در شرایط مختلف، استرهای آلیلی مربوطه را بدست داد. نتایج نشان دادند که در شرایط بهینه (بازروانی کلروفرم و نمک تتراکیس (استونیتریل) مس(I) هگزافلوئورو فسفات) فرآورده ها با بازده خوبی حاصل میشوند. همچنین، بررسی قابلیت بازیافت کاتالیزگر آشکار کرد که پس از سه بار استفاده، فعالیت کاتالیستی آن تغییر محسوسی نمی کند.
[1] L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Metal–organic frameworks as platforms for catalytic applications, Adv. Mater., 30 (2018) 1703663.
[2] A. Manjceevan, K. Velauthamurty, Metal-Organic Frameworks in Heterogeneous Catalysis, Advanced Functional Metal-Organic Frameworks, CRC Press2023, pp. 99-123.
[3] A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez, J. Gascon, Metal–organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives, Chem. Rev., 120 (2020) 8468-8535.
[4] A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts, Catal. Sci. Technol., 6 (2016) 5238-5261.
[5] J. Winarta, B. Shan, S.M. Mcintyre, L. Ye, C. Wang, J. Liu, B. Mu, A decade of UiO-66 research: A historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework, Cryst. Growth Des., 20 (2019) 1347-1362.
[6] J.Y. Kim, J. Kang, S. Cha, H. Kim, D. Kim, H. Kang, I. Choi, M. Kim, Stability of Zr-based UiO-66 metal–organic frameworks in basic solutions, Nanomaterials, 14 (2024) 110.
[7] K.L. Timofeev, S.A. Kulinich, T.S. Kharlamova, NH2-modified UiO-66: Structural characteristics and functional properties, Molecules, 28 (2023) 3916.
[8] Y. Han, M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang, X. Guo, Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: The role of hydrofluoric acid in crystallization, Cryst. Eng. Comm., 17 (2015) 6434-6440.
[9] L. Aldea, I. Delso, M. Hager, M. Glos, J.I. García, J.A. Mayoral, O. Reiser, A reusable enantioselective catalytic system for the Kharasch–Sosnovsky allylic oxidation of alkenes based on a ditopic azabis (oxazoline) ligand, Tetrahedron, 68 (2012) 3417-3422.
[10] M.B. Andrus, J.C. Lashley, Copper catalyzed allylic oxidation with peresters, Tetrahedron, 58 (2002) 845-866.
[11] M.B. Andrus, Z. Zhou, Highly enantioselective copper− bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate, J. Am. Chem. Soc., 124 (2002) 8806-8807.
[12] S. Samadi, H. Arvinnezhad, S. Mansoori, H. Parsa, Preparation and DFT studies of chiral Cu (I)-complexes of biphenyl bisoxazolines and their application in enantioselective Kharasch–Sosnovsky reaction, Sci. Rep., 12 (2022) 15038-11550.
[13] S. Samadi, H. Arvinnezhad, S. Nazari, S. Majidian, Enantioselective allylic C–H bond oxidation of olefins using copper complexes of chiral oxazoline based ligands, Top. Curr. Chem., 380 (2022) 20.
[14] S. Samadi, A. Ashouri, H.I. Rashid, S. Majidian, M. Mahramasrar, Immobilization of (L)-valine and (L)-valinol on SBA-15 nanoporous silica and their application as chiral heterogeneous ligands in the Cu-catalyzed asymmetric allylic oxidation of alkenes, New J. Chem., 45 (2021) 17630-17641.
[15] S. Samadi, A. Ashouri, M. Samadi, Synthesis of chiral allylic esters by using the new recyclable chiral heterogeneous oxazoline-based catalysts, ACS Omega, 5 (2020) 22367-22378.
[16] S. Samadi, K. Jadidi, B. Khanmohammadi, N. Tavakoli, Heterogenization of chiral mono oxazoline ligands by grafting onto mesoporous silica MCM-41 and their application in copper-catalyzed asymmetric allylic oxidation of cyclic olefins, J. Catal., 340 (2016) 344-353.
[17] S. Samadi, K. Jadidi, M. Samadi, A. Ashouri, B. Notash, Designing chiral amido-oxazolines as new chelating ligands devoted to direct Cu-catalyzed oxidation of allylic C-H bonds in cyclic olefins, Tetrahedron, 75 (2019) 862-867.
[18] S. Samadi, K. Jadidi, B. Notash, Chiral bisoxazoline ligands with a biphenyl backbone: development and application in catalytic asymmetric allylic oxidation of cycloolefins, Tetrahedron: Asymmetry, 24 (2013) 269-277.
[19] R. Hayes, T.W. Wallace, A simple route to methyl 5S-(benzoyloxy)-6-oxohexanoate, a key intermediate in leukotriene synthesis, Tetrahedron Lett., 31 (1990) 3355-3356.
[20] J. Ficini, J. d'Angelo, Une nouvelle voie d'acces a l'acide (±) chrysanthemique trans, Tetrahedron Lett., 17 (1976) 2441-2444.
[21] E. Alvarez, M.T. Diaz, R. Perez, J.L. Ravelo, A. Regueiro, J.A. Vera, D. Zurita, J.D. Martin, Simple designs for the construction of complex trans-fused polyether toxin frameworks. A linear strategy based on entropically favored oxirane ring enlargement in epoxycycloalkenes followed by carbon-carbon or carbon-oxygen bond-forming cyclizations, J. Org. Chem., 59 (1994) 2848-2876.
[22] E. Corey, J. Lee, Enantioselective total synthesis of oleanolic acid, erythrodiol,. beta.-amyrin, and other pentacyclic triterpenes from a common intermediate, J. Am. Chem. Soc., 115 (1993) 8873-8874.
[23] S. Samadi, S. Nazari, H. Arvinnezhad, K. Jadidi, B. Notash, A significant improvement in enantioselectivity, yield, and reactivity for the copper-bi-o-tolyl bisoxazoline-catalyzed asymmetric allylic oxidation of cyclic olefins using recoverable SBA-15 mesoporous silica material, Tetrahedron, 69 (2013) 6679-6686.
[24] R. Talebpour, A. Sarvary, S. Samadi, Selective oxidation of benzylic alcohols to the corresponding aldehydes or ketones with perster in the presence of CuPF6 as a catalyst, Nashrieh Shimi va Mohandesi Shimi Iran, 39 (2020) 209-218.
[25] S. Samadi, M. Samadi, The synthesis of allylic esters via direct allylic C-H bonds oxidation of cycloolefins in the presence of copper oxide nanoparticles and nanoporous silica, Nashrieh Shimi va Mohandesi Shimi Iran, 38 (2020) 53-64.
[26] A. Rezaei, H. Zheng, S. Majidian, S. Samadi, A. Ramazani, Chiral pseudohomogeneous catalyst based on amphiphilic carbon quantum dots for the enantioselective Kharasch–Sosnovsky reaction, ACS Appl. Mater. Interfaces, 15 (2023) 54373-54385.
[27] N. Tavakoli, H. Arvinnezhad, S. Majidian, M. Mahramasrar, K. Jadidi, S. Samadi, Chiral amido-oxazoline functionalized MCM-41: A sustainable heterogeneous catalyst for enantioselective Kharasch–Sosnovsky and Henry reactions, Heliyon, 10 (2024) e39911
[28] S. Majidian, H.I. Rashid, Y. Naghdi, M. Irani, S. Samadi, Copper-catalyzed simultaneous dehydrogenation and enantioselective allylic oxidation of alkanes using chiral heterogeneous ligands to produce allylic esters and theoretical investigation of the mechanism, Appl. Organomet. Chem, (2024) e7857.
[29] K. Rasolinia, H. Arvinnezhad, S. Samadi, Copper complex of phenylglycine-functionalized UiO-66-NH2: A chiral MOF catalyst for enantioselective Henry reaction, New J. Chem., 49 (2025) 213-222.
[30] M. Mahramasrar, S. Rezajo, S. Majidian, B. Rostami Tabesh, S. Samadi, Enhancing catalytic activity of UiO-66 through CuO nanoparticles incorporation: A study on Henry reaction and one-pot allylic C-H bond oxidation of olefins, J. Chem. Sci., 136 (2024) 25.
[31] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130 (2008) 13850-13851.
[32] C.L. Luu, T.T. Van Nguyen, T. Nguyen, T.C. Hoang, Synthesis, characterization and adsorption ability of UiO-66-NH2, Adv. Nat. Sci.: Nanosci.Nanotechnol., 6 (2015) 25004.
[33] R. Wu, X. Qian, K. Zhou, H. Liu, B. Yadian, J. Wei, H. Zhu, Y. Huang, Highly dispersed Au nanoparticles immobilized on Zr-based metal–organic frameworks as heterostructured catalyst for CO oxidation, J. Mater. Chem. A, 1 (2013) 14294-14299.
[34] Y. Wang, J. Long, W. Xu, H. Luo, J. Liu, Y. Zhang, J. Li, X. Luo, Removal of uranium (VI) from simulated wastewater by a novel porous membrane based on crosslinked chitosan, UiO-66-NH2 and polyvinyl alcohol, J. Radioanal. Nucl. Chem., 328 (2021) 397-410.